People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tan, Mingliang
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A Front-End ASIC With High-Voltage Transmit Switching and Receive Digitization for 3-D Forward-Looking Intravascular Ultrasound Imaging
Abstract
<p>This paper presents an area- and power-efficient application-specified integrated circuit (ASIC) for 3-D forward-looking intravascular ultrasound imaging. The ASIC is intended to be mounted at the tip of a catheter, and has a circular active area with a diameter of 1.5 mm on the top of which a 2-D array of piezoelectric transducer elements is integrated. It requires only four micro-coaxial cables to interface 64 receive (RX) elements and 16 transmit (TX) elements with an imaging system. To do so, it routes high-voltage (HV) pulses generated by the system to selected TX elements using compact HV switch circuits, digitizes the resulting echo signal received by a selected RX element locally, and employs an energy-efficient load-modulation datalink to return the digitized echo signal to the system in a robust manner. A multi-functional command line provides the required sampling clock, configuration data, and supply voltage for the HV switches. The ASIC has been realized in a 0.18-&#x03BC;m HV CMOS technology and consumes only 9.1 mW. Electrical measurements show 28-V HV switching and RX digitization with a 16-MHz bandwidth and 53-dB dynamic range. Acoustical measurements demonstrate successful pulse transmission and reception. Finally, a 3-D ultrasound image of a three-needle phantom is generated to demonstrate the imaging capability.</p>