People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fernando, Gerard
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Effects of NaOH treatment and NaOH treatment conditions on the mechanical properties of coir fibres for use in composites manufacturecitations
- 2023Simultaneous multi-measurand analyses of cross-linking reactions within a differential scanning calorimeter using optical fibre sensorscitations
- 2023Single-Solvent Fractionation and Electro-Spinning Neat Softwood Kraft Lignincitations
- 2022Monitoring Cross-Linking, the Evolution of Refractive Index and the Glass Transition Temperature of an Epoxy Resin Using an Optical Fiber Sensorcitations
- 2021Vertically-aligned short E-glass fibre core sandwich composite: Production and evaluationcitations
- 2021Improved procedure for electro-spinning and carbonisation of neat solvent-fractionated softwood Kraft lignincitations
- 2016Monitoring pre-stressed composites using optical fibre sensorscitations
- 2016In-situ monitoring of cross-linking reactions using E-glass fibres and evanescent wave spectroscopycitations
- 2014Multi-point monitoring of cross-linking reactionscitations
- 2012Lateral spreading of a fiber bundle via mechanical meanscitations
- 2011Synthesis of Ag/AgCl-mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. colicitations
- 2010Evaluation of Embedded Optical Fiber Composites: EFPI Sensor Response to Sensors in Fatigue Loadingcitations
- 2009In-situ damage detection using self-sensing compositescitations
- 2009Evaluation of embedded optical fiber sensors in composites: EFPI sensor fabrication and quasi-static evaluationcitations
- 2009A comparison of cure monitoring techniquescitations
- 2008A novel fibre optic acoustic emission sensorcitations
- 2008Chemical process monitoring and the detection of moisture ingress in composites - art. no. 69330R
- 2007Smart materials and systems
- 2007Fabrication of intrinsic fibre Fabry–Perot sensors in silica fibres using hydrofluoric acid etchingcitations
- 2006Process monitoring of fibre reinforced composites using optical fibre sensorscitations
- 2006Investigation of reversible photo-mechanical properties of azobenzene-based polymer films by nano-indentationcitations
- 2002A Method To Measure The Interfacial Shear Stress For Optical Fibres Embedded In Fibre Reinforced Composites
Places of action
Organizations | Location | People |
---|
article
Monitoring Cross-Linking, the Evolution of Refractive Index and the Glass Transition Temperature of an Epoxy Resin Using an Optical Fiber Sensor
Abstract
<p>Hyphenated analytical techniques enable the simultaneous measurement of relevant processing and materials parameters under identical environmental conditions. In the current study, a power-compensated differential scanning calorimeter (DSC) was custom-modified to enable the integration of an optical fibre sensor to monitor in situ the progression of the cross-linking reactions by inferring the evolution of the refractive index. A cleaved optical fibre was used and it served as a Fresnel reflection sensor (FRS). The DSC was calibrated with and without the integrated FRS and it was demonstrated that it did not influence the performance of the DSC. The FRS was calibrated using reference refractive index oils within the DSC. An epoxy/amine resin system was cross-linked at 70 ^oC and the enthalpy of cross-linking and the evolution of the refractive index were monitored simultaneously using the DSC and FRS respectively. After the cross-linking was completed, the DSC was programmed to perform a ramped heating schedule from ambient temperature to 150 ^oC. The FRS was capable of detecting glass transition temperature (Tg) of the cross-linked resin. An excellent correlation was observed for the Tg obtained by the FRS and DSC. The contribution of factors affecting the resolution of the data from the FRS are discussed.</p>