Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Somerset, William E.

  • Google
  • 5
  • 11
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024High Stiffness Resin for Flexural Ultrasonic Transducerscitations
  • 2023Flexural ultrasonic transducers with nonmetallic membranescitations
  • 2021Active damping of ultrasonic receiving sensors through engineered pressure waves8citations
  • 2020Venting in the comparative study of flexural ultrasonic transducers to improve resilience at elevated environmental pressure levels6citations
  • 2020Measurement using flexural ultrasonic transducers in high pressure environments1citations

Places of action

Chart of shared publication
Feeney, Andrew
5 / 34 shared
Dixon, Steve
4 / 24 shared
Kang, Lei
5 / 28 shared
Hamilton, Alexander
1 / 1 shared
Hafezi, Mahshid
2 / 6 shared
Adams, Sam
2 / 2 shared
Cochran, Sandy
1 / 33 shared
Liu, Yuchen
1 / 5 shared
Lam, Koko
1 / 1 shared
Chibli, Abdul Hadi
1 / 1 shared
Dixon, Steve M.
1 / 7 shared
Chart of publication period
2024
2023
2021
2020

Co-Authors (by relevance)

  • Feeney, Andrew
  • Dixon, Steve
  • Kang, Lei
  • Hamilton, Alexander
  • Hafezi, Mahshid
  • Adams, Sam
  • Cochran, Sandy
  • Liu, Yuchen
  • Lam, Koko
  • Chibli, Abdul Hadi
  • Dixon, Steve M.
OrganizationsLocationPeople

article

Venting in the comparative study of flexural ultrasonic transducers to improve resilience at elevated environmental pressure levels

  • Dixon, Steve M.
  • Feeney, Andrew
  • Somerset, William E.
  • Kang, Lei
Abstract

The classical form of a flexural ultrasonic transducer is a piezoelectric ceramic disc bonded to a circular metallic membrane. This ceramic induces vibration modes of the membrane for the generation and detection of ultrasound. The transducer has been popular for proximity sensing and metrology, particularly for industrial applications at ambient pressures around 1 bar. The classical flexural ultrasonic transducer is not designed for operation at elevated pressures, such as those associated with natural gas transportation or petrochemical processes. It is reliant on a rear seal which forms an internal air cavity, making the transducer susceptible to deformation through pressure imbalance. The application potential of the classical transducer is therefore severely limited. In this study, a venting strategy which balances the pressure between the internal transducer structure and the external environment is studied through experimental methods including electrical impedance analysis and pitch-catch ultrasound measurement. The vented transducer is compared with a commercial equivalent in air towards 90 bar. Venting is shown to be viable for a new generation of low cost and robust industrial ultrasonic transducers, suitable for operation at high environmental pressure levels.

Topics
  • impedance spectroscopy
  • ultrasonic
  • ceramic