People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baere, Dieter De
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023Experimental evaluation of the metal powder particle flow on the melt pool during directed energy depositioncitations
- 2023Comparison and Analysis of Hyperspectral Temperature Data in Directed Energy Depositioncitations
- 2020Spatial distributed spectroscopic monitoring of melt pool and vapor plume during the laser metal deposition processcitations
- 2019Hyperspectral and Thermal Temperature Estimation During Laser Claddingcitations
- 2019Analytical Modeling of Embedded Load Sensing Using Liquid-Filled Capillaries Integrated by Metal Additive Manufacturingcitations
- 2019On the Influence of Capillary-Based Structural Health Monitoring on Fatigue Crack Initiation and Propagation in Straight Lugscitations
- 2018Fatigue performance of powder bed fused Ti-6Al-4V component with integrated chemically etched capillary for structural health monitoring application.citations
- 2018Effective Structural Health Monitoring through the Monitoring of Pressurized Capillaries in Additive Manufactured Materials
- 2017Effect of Surface Roughness on Fatigue Crack Initiation in Additive Manufactured components with Integrated Capillary for SHM Application
- 2017Proof of Concept of Integrated Load Measurement in 3D Printed Structurescitations
- 2017Model-based temperature feedback control of laser cladding using high-resolution hyperspectral imagingcitations
- 2017Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring Systemcitations
- 2016Hardware-in-the-loop control of additive manufacturing processes using temperature feedbackcitations
- 2016Fatigue of Ti6Al4V Structural Health Monitoring Systems Produced by Selective Laser Meltingcitations
- 2016Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition processcitations
- 2016Evaluation of the Diffuse Reflectivity Behaviour of the Melt Pool During the Laser Metal Deposition Process
- 2016Assessment of eSHM system combining different NDT methods
- 2016Temperature Feedback Control of Laser Cladding Using High Resolution Hyperspectral Imaging
- 2015Modeling of laser beam and powder flow interaction in laser cladding using ray-tracingcitations
- 2015Feasibility study on integrated structural health monitoring system produced by metal three-dimensional printingcitations
- 2015Hardware-in-the-loop control of additive manufacturing processes using temperature feedback
- 2015Acoustic emission monitoring of crack propagation in titanium samples
- 2015Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition process
- 2014A combination of Additive Manufacturing Technologies and Structural Health Monitoring systems as an intelligent structure
- 2014Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing
- 2007Structural Health Monitoring of Slat Tracks using transient ultrasonic waves
Places of action
Organizations | Location | People |
---|
article
Analytical Modeling of Embedded Load Sensing Using Liquid-Filled Capillaries Integrated by Metal Additive Manufacturing
Abstract
<p>Additive manufacturing (AM) offers new manufacturing solutions for the integration of smart functionalities in engineering structures. In this paper, an analytical model is presented for an embedded load sensing element based on a liquid-filled capillary. During the additive manufacturing process, the capillary is integrated in the region where the strain is to be determined. The embedded capillary deforms as the structure deforms under an applied load, as such altering the pressure inside the capillary. The monitoring of the capillary pressure allows monitoring the loads and thus usage of the component. This paper presents a model describing the behavior of the sensing element under uniform tensile stress. The sensitivity of the load sensing element per unit longitudinal strain depends on the bulk modulus of the liquid inside the capillary and the Poisson coefficient of the surrounding material. The current work further compares the analytical model against static tension-compression tests of powder bed fused stainless steel (AISI 316L) test specimen with an integrated capillary filled with a liquid (water). Similarly, the validation of the model is then checked against a dynamic four-point bending test on a Ti-6Al-4V specimen produced by powder bed fusion.</p>