Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhou, Leiqing

  • Google
  • 2
  • 10
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Ultrasonic inspection and self-healing of Ge and 3C-SiC semiconductor membranes7citations
  • 2019Dynamic nonlinearity in piezoelectric flexural ultrasonic transducers18citations

Places of action

Chart of shared publication
Colston, Gerard B.
1 / 1 shared
Shah, V. A.
1 / 4 shared
Edwards, R. S.
1 / 6 shared
Myronov, Maksym
1 / 3 shared
Leadley, D. R.
1 / 3 shared
Trushkevych, Oksana
1 / 4 shared
Feeney, Andrew
1 / 34 shared
Dixon, Steve
1 / 24 shared
Kang, Lei
1 / 28 shared
Rowlands, George
1 / 6 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Colston, Gerard B.
  • Shah, V. A.
  • Edwards, R. S.
  • Myronov, Maksym
  • Leadley, D. R.
  • Trushkevych, Oksana
  • Feeney, Andrew
  • Dixon, Steve
  • Kang, Lei
  • Rowlands, George
OrganizationsLocationPeople

article

Dynamic nonlinearity in piezoelectric flexural ultrasonic transducers

  • Feeney, Andrew
  • Dixon, Steve
  • Kang, Lei
  • Zhou, Leiqing
  • Rowlands, George
Abstract

<p>The flexural ultrasonic transducer is a unimorph device which typically comprises a piezoelectric ceramic bonded to a metallic membrane. It is widely applied in industrial applications for metrology and proximity sensing. However, the electromechanical and dynamic characteristics of this class of transducer have only recently been reported, and the influence of different excitation levels on dynamic nonlinearity remains unclear. Dynamic nonlinearity in high-power piezoelectric ultrasonic transducers is familiar, where the performance or dynamic stability of the transducer can significantly reduce under high amplitudes of excitation. Nonlinearity can manifest as measurable phenomena such as resonance frequency drift, influenced by thermomechanical phenomena or structural constraints. There is relatively little reported science of the dynamic nonlinearity in the vibration response of flexural ultrasonic transducers. This study examines the vibration responses of four flexural ultrasonic transducers, showing the existence of dynamic nonlinearity for increases in excitation voltage. An analytical solution of the governing equations of motion for the flexural ultrasonic transducer is presented which complements the experimental investigation, and suggests a close relationship between material properties and nonlinearity. This research demonstrates a detailed dynamic characterization of the flexural ultrasonic transducer, showing the potential for the optimization of dynamic performance in industrial measurement applications.</p>

Topics
  • impedance spectroscopy
  • ultrasonic
  • ceramic