People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alfadhel, Ahmed
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2016Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Deliverycitations
- 2016A Magnetoresistive Tactile Sensor for Harsh Environment Applicationscitations
- 2016Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applicationscitations
- 2016Magnetic Nanocomposite Cilia Energy Harvestercitations
- 2016Fabrication and characterization of magnetic composite membrane pressure sensorcitations
- 2016Tunable magnetic nanowires for biomedical and harsh environment applicationscitations
- 2016A single magnetic nanocomposite cilia force sensorcitations
- 2016Magnetic nanocomposite sensor
- 2016Magnetic Tactile Sensor for Braille Readingcitations
- 2015Magnetic Nanocomposite Cilia Tactile Sensorcitations
- 2015Biomimetic magnetic nanocomposite for smart skinscitations
- 2015Magnetoelectric polymer nanocomposite for flexible electronicscitations
- 2015Magnetic micropillar sensors for force sensingcitations
- 2014Magnetic polymer nanocomposites for sensing applicationscitations
- 2014A magnetic nanocomposite for biomimetic flow sensingcitations
- 2012Microfabrication of magnetostrictive beams based on NiFe film doped with B and Mo for integrated sensor systemscitations
Places of action
Organizations | Location | People |
---|
article
Magnetic Tactile Sensor for Braille Reading
Abstract
We report a biomimetic magnetic tactile sensor for Braille characters reading. The sensor consists of magnetic nanocomposite artificial cilia implemented on magnetic micro sensors. The nanocomposite is produced from the highly elastic polydimethylsiloxane and iron nanowires that exhibit a permanent magnetic behavior. This design enables remote operation and does not require an additional magnetic field to magnetize the nanowires. The highly elastic nanocomposite is easy to pattern, corrosion resistant and thermally stable. The tactile sensors can detect vertical and shear forces, which allows recognizing small changes in surface texture, as in the case of Braille dots. The 6 dots of a braille cell are read from top to bottom with a tactile sensor array consisting of 4 elements and 1 mm long nanocomposite cilia.