People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maier, Rrj
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2021Enhanced fiber mounting and etching technique for optimized optical power transmission at critical cladding thickness for fiber-sensing applicationcitations
- 2020Dynamics rate of fiber chemical etchingcitations
- 2018Laser-based fabrication of microfluidic devices for porous media applicationscitations
- 2018Rapid Laser Manufacturing of Microfluidic Devices from Glass Substratescitations
- 2017Fabrication of three-dimensional micro-structures in glass by picosecond laser micro-machining and welding
- 2017An open-architecture metal powder bed fusion system for in-situ process measurementscitations
- 2017Integrating fiber Fabry-Perot cavity sensor into 3-D printed metal components for extreme high-temperature monitoring applicationscitations
- 2016Laser polishing - Enhancing surface quality of additively manufactured cobalt chrome and titanium components
- 2016Embedding fibre optical sensors into SLM parts
- 2016Stainless steel component with compressed fiber Bragg grating for high temperature sensing applicationscitations
- 2015Measuring residual stresses in metallic components manufactured with fibre bragg gratings embedded by selective laser meltingcitations
- 2015SS316 structure fabricated by selective laser melting and integrated with strain isolated optical fiber high temperature sensorcitations
- 2015In-situ strain sensing with fiber optic sensors embedded into stainless steel 316citations
- 2014In-situ measurements with fibre bragg gratings embedded in stainless steelcitations
- 2013Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fiberscitations
- 2013Embedding optical fibers into stainless steel using laser additive manufacturing
- 2013Embedded fibre optic sensors within additive layer manufactured componentscitations
- 2013Embedding metallic jacketed fused silica fibres into stainless steel using additive layer manufacturing technologycitations
- 2012Laser precision surface sculpting of 2D diffractive optical structures on metals
- 2012Modelling of Long Period Gratings with Metallic (Pd) Jacket
- 2011Micro-sculpting of diffractive scales on metal surfaces for optical position encoders, the 'YAGboss' process
- 2009All Fibre based Hydrogen Sensing using Palladium coated Long Period Gratings
- 2005Single-mode mid-IR guidance in a hollow-core photonic crystal fibercitations
- 2004Temperature dependence of the stress response of fibre Bragg gratingscitations
Places of action
Organizations | Location | People |
---|
article
Embedded fibre optic sensors within additive layer manufactured components
Abstract
Smart materials with integrated sensing capabilities are now ubiquitous in many structures manufactured from composite materials and offer enhancement to the safety, reliability and efficiency of the resulting devices.<br/>This paper explores the application of embedded sensors to components manufactured using Additive Layer Manufacturing (ALM) technology.ALM offers the ability to create physical parts with little or no restriction in shape complexity.In this paper, optical fibre sensors incorporating fibre Bragg gratings (FBGs) were embedded inside a component made during a powder bed based layer-by-layer additive manufacturing process using a commercial EOS P730 system, where a laser was used to sinter the polymeric powder into a three dimensional component. <br/>The approach is based upon insertion of a ‘fibre-carrier’ component which replaced a removable ‘place-holder’ component during an interruption of the ALM build process.<br/>Tensile test specimens fabricated this way have been subjected to extended cyclic tensile loading trials at low strain levels of up to 475 µe.The test specimens demonstrated stable and reproducible responses over a period in excess of 720 days and 311,000 load cycles.<br/>Polyimide (PI) and acrylic (PMMA) jacketed fibres have been trialled and the resulting deformations of the component through internal stresses depending on the fibre jacket type are discussed.<br/>