People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Araujo, Fm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2012Intrinsic Fabry-Perot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurementcitations
- 2010Splicing and coupling losses in hollow-core photonic crystal glass fiberscitations
- 2010Intrinsic Fabry-Perot cavity sensor based on chemical etching of a multimode graded index fiber spliced to a single mode fibercitations
- 2009Modal Interferometer Based on ARROW Fiber for Strain and Temperature Measurementcitations
- 2009Geometrical effects on the refractive index sensitivity of Mach-Zehnder fibre modal interferometers based on long-period gratingscitations
- 2005Strain and temperature discrimination using a Hi-Bi grating partially exposed to chemical etchingcitations
- 2005Intensity-referenced and temperature-independent curvature-sensing concept based on chirped fiber Bragg gratingscitations
- 2004Intensity-referenced temperature-independent curvature sensing concept based on chirped gratings embedded in a composite laminatecitations
- 2003Load cell for structural monitoring based on a microbend self-referenced fiber optic intensity sensor
- 2001Smart composite for monitoring of structure
Places of action
Organizations | Location | People |
---|
article
Intrinsic Fabry-Perot Cavity Sensor Based on Etched Multimode Graded Index Fiber for Strain and Temperature Measurement
Abstract
Two Fabry-Perot interferometers based on chemical etching in multimode graded index fibers are fabricated and their response to temperature and strain are compared. Chemical etching is applied in the graded index fiber end creating an air cavity. The interferometric cavity is formed when the graded index fiber with the air concavity is spliced to a single-mode fiber. The intrinsic sensors present high sensitivity to strain and low sensitivity to temperature. For the 62.5 mu m core fiber, sensitivities of 6.99 pm/mu epsilon and, 0.95 pm/degrees C were obtained for strain and temperature, respectively. The sensor based in the 50 mu m core fiber, on the other hand, presented sensitivities of 4.06 pm/mu epsilon and -0.84 pm/degrees C for strain and temperature, respectively.