Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Phang, Sieu Pheng

  • Google
  • 11
  • 33
  • 219

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Electron contact interlayers for low‐temperature‐processed crystalline silicon solar cells2citations
  • 2022Gettering in silicon photovoltaics59citations
  • 2021Investigation of Gallium-Boron Spin-On Codoping for poly-Si/SiOx Passivating Contacts3citations
  • 201922.6% Efficient Solar Cells with Polysilicon Passivating Contacts on n-type Solar-Grade Wafers14citations
  • 2018Effective impurity gettering by phosphorus- and boron-diffused polysilicon passivating contacts for silicon solar cells61citations
  • 2018Impurity Gettering by Diffusion-doped Polysilicon Passivating Contacts for Silicon Solar Cells2citations
  • 2015Charge states of the reactants in the hydrogen passivation of interstitial iron in P-type crystalline silicon12citations
  • 2014External and internal gettering of interstitial iron in silicon for solar cells13citations
  • 2014The impact of SiO2/SiNrm x stack thickness on laser doping of silicon solar cell7citations
  • 2013Secondary electron microscopy dopant contrast image (SEMDCI) for laser doping16citations
  • 2012Investigating internal gettering of iron at grain boundaries in multicrystalline silicon via photoluminescence imaging30citations

Places of action

Chart of shared publication
Bullock, James
1 / 3 shared
Michel, Jesus Ibarra
1 / 1 shared
Korte, Lars
1 / 14 shared
Hameiri, Ziv
2 / 5 shared
Yan, Di
6 / 8 shared
Macco, Bart
1 / 20 shared
Berghuis, Willemjan
1 / 1 shared
Chen, Wenhao
1 / 2 shared
Macdonald, Daniel
2 / 10 shared
Le, Anh Huy Tuan
1 / 1 shared
Stuckelberger, Josua
1 / 1 shared
Cuevas, Andres
3 / 4 shared
Nguyen, Hieu T.
1 / 4 shared
Young, Matthew
1 / 5 shared
Tebyetekerwa, Mike
1 / 4 shared
Al-Jassim, Mowafak
1 / 5 shared
Truong, Thien N.
1 / 3 shared
Le, Tien T.
1 / 2 shared
Degoulange, Julien
1 / 1 shared
Sun, Chang
2 / 4 shared
Samundsett, Christian
1 / 4 shared
Einhaus, Roland
1 / 1 shared
Armand, Stephane
1 / 1 shared
Liang, Wensheng
1 / 2 shared
Li, Li
1 / 24 shared
Rougieux, Fiacre E.
1 / 2 shared
Fell, Andreas
2 / 14 shared
Yang, Xinbo
2 / 5 shared
Franklin, Evan
2 / 5 shared
Xu, Lujia
2 / 5 shared
Chen, Hua
1 / 5 shared
Brink, Frank
1 / 3 shared
Walter, Daniel
1 / 3 shared
Chart of publication period
2023
2022
2021
2019
2018
2015
2014
2013
2012

Co-Authors (by relevance)

  • Bullock, James
  • Michel, Jesus Ibarra
  • Korte, Lars
  • Hameiri, Ziv
  • Yan, Di
  • Macco, Bart
  • Berghuis, Willemjan
  • Chen, Wenhao
  • Macdonald, Daniel
  • Le, Anh Huy Tuan
  • Stuckelberger, Josua
  • Cuevas, Andres
  • Nguyen, Hieu T.
  • Young, Matthew
  • Tebyetekerwa, Mike
  • Al-Jassim, Mowafak
  • Truong, Thien N.
  • Le, Tien T.
  • Degoulange, Julien
  • Sun, Chang
  • Samundsett, Christian
  • Einhaus, Roland
  • Armand, Stephane
  • Liang, Wensheng
  • Li, Li
  • Rougieux, Fiacre E.
  • Fell, Andreas
  • Yang, Xinbo
  • Franklin, Evan
  • Xu, Lujia
  • Chen, Hua
  • Brink, Frank
  • Walter, Daniel
OrganizationsLocationPeople

article

Investigating internal gettering of iron at grain boundaries in multicrystalline silicon via photoluminescence imaging

  • Phang, Sieu Pheng
  • Walter, Daniel
Abstract

<p>In this paper, we present measurements and modeling of the reduction in dissolved iron Fe; concentrations near grain boundaries in multicrystalline silicon (mc-Si) wafers. The measurements of the interstitial Fe concentrations are obtained via photoluminescence images taken before and after iron-boron pair dissociation. A simple diffusion-capture model was developed to characterize the removal of interstitial Fe by the gettering sites. The model is based on a numerical solution to the 1-D diffusion equation with two fitting parameters: the diffusion length of dissolved Fe atoms and the effective gettering velocity at the gettering site. By comparing the simulation with a controlled phosphorous gettering process, the model is shown to give good estimation of the diffusion length of Fe atoms. For as-cut multicrystalline silicon wafers from different parts of the ingot, that is, wafers with different average dissolved Fe concentrations [Fe <sub>i</sub>], the diffusion lengths of Fe atoms are found to decrease with decreasing average [Fe- <sub>i</sub>]. This suggests the presence of relaxation precipitation during the internal gettering of dissolved Fe by the grain boundaries in mc-Si during ingot cooling.</p>

Topics
  • impedance spectroscopy
  • photoluminescence
  • grain
  • simulation
  • Silicon
  • precipitation
  • Boron
  • iron
  • interstitial