People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skaik, Talal
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024CNC-Machined and 3D-Printed Metal G-band Diplexers for Earth Observation Applicationscitations
- 2023A monolithically printed filtering waveguide aperture antennacitations
- 2023Lightweight, High-Q and High Temperature Stability Microwave Cavity Resonators Using Carbon-Fiber Reinforced Silicon-Carbide Ceramic Compositecitations
- 2023Compact Self-Supportive Filters Suitable for Additive Manufacturingcitations
- 2023Compact Monolithic 3D-Printed Wideband Filters Using Pole-Generating Resonant Irisescitations
- 2023Evaluation of 3D printed monolithic G-band waveguide componentscitations
- 2022A 3D printed 300 GHz waveguide cavity filter by micro laser sinteringcitations
- 2022D-band waveguide diplexer fabricated using micro laser sinteringcitations
- 2022A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter With High Thermal Stability for OMUXscitations
- 2022Thermal stability analysis of 3D printed resonators using novel materialscitations
- 2021125 GHz frequency doubler using a waveguide cavity produced by stereolithographycitations
- 2020180 GHz Waveguide Bandpass Filter Fabricated by 3D Printing Technologycitations
Places of action
Organizations | Location | People |
---|
article
Compact Monolithic 3D-Printed Wideband Filters Using Pole-Generating Resonant Irises
Abstract
The design concept of a pole-generating resonant iris is demonstrated in rectangular waveguide filters in this paper. Different from conventional reactive iris, the resonant iris can generate an extra transmission pole without increasing the number of resonant cavities. As a result, several design advantages can be gained: (i) a more compact filter structure; (ii) an ability to realize strong coupling and therefore wide bandwidth; and (iii) a new polarization rotation capability. Two third-order Chebyshev filters are designed and implemented, demonstrating the miniaturization and polarization rotation feature. A fifth-order Chebyshev filter with 20% fractional bandwidth is presented to show the capability of realizing wideband. This also demonstrates the realization of asymmetric coupling between the resonant iris and the cavity resonator on either side. An approach to control and extract the coupling between the iris and the cavity resonator has also been presented. To manufacture the intricate asymmetric iris structure, all the presented filters are printed monolithically using selective laser melting technique. Excellent agreement between the measurements and simulations has been achieved, verifying the design concept as well as the additive manufacturing capability in microwave waveguide devices.