People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques, Carlos
Technical University of Ostrava
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Optical Fiber pH Sensors Based on PAni-coated Microstructured Optical Fibers
- 2024NP-Doped Fiber Smart Tendon: A Millimeter-Scale 3-D Shape Reconstruction With Embedded Distributed Optical Fiber Sensor Systemcitations
- 2023Bragg Gratings in ZEONEX Microstructured Polymer Optical Fiber With 266 nm Nd:YAG Lasercitations
- 2022Interrogation Method with Temperature Compensation Using Ultra-Short Fiber Bragg Gratings in Silica and Polymer Optical Fibers as Edge Filterscitations
- 2021Accumulation of styrene oligomers alters lipid membrane phase order and miscibilitycitations
- 2021Compact dual-strain sensitivity polymer optical fiber grating for multi-parameter sensingcitations
- 2021Chirped POF Bragg grating production utilizing UV cure adhesive coating for multiparameter sensingcitations
- 2021Sensing Applications of Polymer Optical Fiber Fuse
- 2020Development and Characterization of UV-Resin Coated Fiber Bragg Gratings
- 2019Inscription of Bragg gratings in undoped PMMA mPOF with Nd:YAG laser at 266 nm wavelengthcitations
- 2019Toward Commercial Polymer Fiber Bragg Grating Sensors: Review and Applicationscitations
- 2018Thermal profile detection through high-sensitivity fiber optic chirped Bragg grating on microstructured PMMA fibercitations
- 2018Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials
- 2018Hot water-assisted fabrication of chirped polymer optical fiber Bragg gratingscitations
- 2018Bragg Grating Inscription With Low Pulse Energy in Doped Microstructured Polymer Optical Fiberscitations
- 2018Influence of the Cladding Structure in PMMA mPOFs Mechanical Properties for Strain Sensors Applicationscitations
- 2018Fast Inscription of Long Period Gratings in Microstructured Polymer Optical Fiberscitations
- 2018Thermal stability of fiber Bragg gratings inscribed in microstructured polymer optical fibers with a single UV laser pulse
- 2018Largely tunable dispersion chirped polymer FBGcitations
- 2018Microstructured PMMA POF chirped Bragg gratings for strain sensingcitations
- 2018LPG inscription in mPOF for optical sensingcitations
- 2018Chirped mPOF Bragg grating for strain sensing
- 2015Highly sensitive liquid level sensor using a polymer optical Bragg grating for industrial applicationscitations
Places of action
Organizations | Location | People |
---|
article
Toward Commercial Polymer Fiber Bragg Grating Sensors: Review and Applications
Abstract
Interest in polymer optical fiber Bragg gratings (POFBGs) arises from the different material properties and sensing modalities brought by polymers relative to silica. Polymer fibers typically offer twice the sensitivity to temperature of conventional silica fiber and increased sensitivity to strain overall. In addition, polymer fibers have higher elastic limits and as a result a larger range of operation for physical constraints. While some polymers are effectively humidity insensitive, others present inherent humidity sensitivity. Their organic properties also allow a variety of chemical processes to create (bio)chemical sensors, with the consequences of fiber breakage in situ being less hazardous than silica. These attributes have led to the use of POFBGs for applications that remain complex using silica fibers. This review paper covers the progress toward commercialization and the increasing number of specific applications.