People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koba, Marcin
National Institute of Telecommunications
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Performance of nanoimprinted and nanocoated optical label-free biosensor - nanocoating properties perspectivecitations
- 2018Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrodecitations
- 2018Optical detection of ketoprofen by its electropolymerization on an indium tin oxide-coated optical fiber probecitations
- 2015Sensing properties of periodic stack of nano-films deposited with various vapor-based techniques on optical fiber end-facecitations
- 2011Analysis of microstructure eutectic Tb3Sc2Al3O12-TbScO3 photonic properties
Places of action
Organizations | Location | People |
---|
article
Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode
Abstract
In this paper, we discuss the application of optical fiber sensors based on lossy-mode resonance (LMR) phenomenon for real-time optical monitoring of electrochemical processes. The sensors were obtained by a reactive high power impulse magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm long core of polymer-clad silica fibers. The LMR effect made monitoring of changes in optical properties of both ITO and its surrounding medium possible. Moreover, since ITO is electrically conductive and electrochemically active, it was used as a working electrode in a three-electrode cyclic voltammetry setup. The investigations have shown that the sensor's optical response strongly depends on the potential applied to the sensor, as well as on electrochemical modification of its surface. The obtained LMR effect can be applied in parallel to electrochemical measurements for real-time optical monitoring of the electrode conditions and properties of the surrounding medium.