People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bucci, Davide
Grenoble Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022New generation of optical sensors: Fluorescent architecture channel waveguide / diffraction grating developed by sol-gel processing
- 2018Optofluidic Integrated Sensor on Glass for Harsh Environment Measurements: Case of Plutonium(VI) in Nitric Acid
- 2018Opto-electrical simulation of III-V nanowire based tandem solar cells on Sicitations
- 2017Cost effective laser structuration of optical waveguides on thin glass interposer
- 2016Packaged integrated opto-fluidic solution for harmful fluid analysiscitations
- 2013Glass integrated nanochannel waveguide for concentration measurementscitations
- 20121.55 μm hybrid waveguide laser made by ion-exchange and wafer bondingcitations
- 2006Realization of a pump/signal duplexer using periodically segmented waveguide in integrated optics on glass
Places of action
Organizations | Location | People |
---|
article
Cost effective laser structuration of optical waveguides on thin glass interposer
Abstract
International audience ; In order to enhance electro-optical system-in-package capabilities for silicon photonics, a cost effective fabrication process for optical waveguides integration on thin glass substrate interposer is demonstrated. Firstly, a femtosecond laser ablation coupled with a hydrofluoric acid etching is developed to create micro grooves at the glass surface. Secondly, a dry film lamination followed by chemical mechanical planarization is achieved to define surface optical waveguides by filling the micro channels. Physical characterizations of the fabricated waveguides are performed using optical and scanning electron microscopy. Finally, optical mode profile and loss characterizations confirm the optical functionality of waveguides which prove to be multimodal at 1550 nm.