Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Santa, Ana

  • Google
  • 4
  • 25
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics5citations
  • 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaics5citations
  • 2020Rail-to-Rail Timing Signals Generation Using InGaZnO TFTs for Flexible X-Ray Detector24citations
  • 2018Boosting highly transparent and conducting indium zinc oxide thin films through solution combustion synthesis: Influence of rapid thermal annealing11citations

Places of action

Chart of shared publication
Laia, César
1 / 9 shared
Martins, Rodrigo
4 / 166 shared
Mendes, Manuel Joao
1 / 18 shared
Ruivo, Andreia
2 / 4 shared
Vaz Pinto, Joana
1 / 12 shared
Mateus, Tiago
2 / 12 shared
Águas, Hugo
2 / 41 shared
Ferro, Marta
2 / 3 shared
Deuermeier, Jonas
2 / 38 shared
Pinheiro, Ana
2 / 2 shared
Rocha, João
2 / 14 shared
Gago, Sandra
2 / 4 shared
Mendes, Manuel J.
1 / 7 shared
Laia, César A. T.
1 / 1 shared
Pinto, Joana Vaz
1 / 3 shared
Tavares, Vitor
1 / 1 shared
Pereira, Maria
1 / 3 shared
Tiwari, Bhawna
1 / 1 shared
Bahubalindruni, Pydi
1 / 2 shared
Martins, Jorge
1 / 10 shared
Gonçalves, Gonçalo
1 / 8 shared
Matteis, Fabio De
1 / 2 shared
Ullah, Sana
1 / 13 shared
Davoli, Ivan
1 / 7 shared
Branquinho, Rita
1 / 21 shared
Chart of publication period
2023
2020
2018

Co-Authors (by relevance)

  • Laia, César
  • Martins, Rodrigo
  • Mendes, Manuel Joao
  • Ruivo, Andreia
  • Vaz Pinto, Joana
  • Mateus, Tiago
  • Águas, Hugo
  • Ferro, Marta
  • Deuermeier, Jonas
  • Pinheiro, Ana
  • Rocha, João
  • Gago, Sandra
  • Mendes, Manuel J.
  • Laia, César A. T.
  • Pinto, Joana Vaz
  • Tavares, Vitor
  • Pereira, Maria
  • Tiwari, Bhawna
  • Bahubalindruni, Pydi
  • Martins, Jorge
  • Gonçalves, Gonçalo
  • Matteis, Fabio De
  • Ullah, Sana
  • Davoli, Ivan
  • Branquinho, Rita
OrganizationsLocationPeople

article

Rail-to-Rail Timing Signals Generation Using InGaZnO TFTs for Flexible X-Ray Detector

  • Tavares, Vitor
  • Pereira, Maria
  • Santa, Ana
  • Martins, Rodrigo
  • Tiwari, Bhawna
  • Bahubalindruni, Pydi
  • Martins, Jorge
Abstract

<p>This paper reports on-chip rail-to-rail timing signals generation thin-film circuits for the first time. These circuits, based on a-IGZO thin-film transistors (TFTs) with a simple staggered bottom gate structure, allow row and column selection of a sensor matrix embedded in a flexible radiation sensing system. They include on-chip clock generator (ring oscillator), column selector (shift register) and row-selector (a frequency divider and a shift register). They are realised with rail-to-rail logic gates with level-shifting ability that can perform inversion and NAND logic operations. These logic gates are capable of providing full output swing between supply rails, $V_{DD}$ and $V_{SS}$ , by introducing a single additional switch for each input in bootstrapping logic gates. These circuits were characterised under normal ambient atmosphere and show an improved performance compared to the conventional logic gates with diode connected load and pseudo CMOS counterparts. By using these high-performance logic gates, a complete rail-to-rail frequency divider is presented from measurements using D-Flip Flop. In order to realize a complete compact system, an on-chip ring oscillator (output clock frequency around 1 kHz) and a shift register are also presented from simulations, where these circuits show a power consumption of 1.5 mW and 0.82 mW at a supply voltage of 8 V, respectively. While the circuit concepts described here were designed for an X-ray sensing system, they can be readily expanded to other domains where flexible on-chip timing signal generation is required, such as, smart packaging, biomedical wearable devices and RFIDs.</p>

Topics
  • impedance spectroscopy
  • simulation