People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mäntysalo, Matti
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2025Enhancing specific capacitance and energy density in printed supercapacitors : The role of activated wood carbon and electrolyte dynamicscitations
- 2024Flexible screen-printed supercapacitors with asymmetric PANI/CDC–AC electrodes and aqueous electrolytecitations
- 2024Recyclability of novel energy harvesting and storage technologies for IoT and wireless sensor networkscitations
- 2024Monolithic supercapacitors prepared by roll-to-roll screen printingcitations
- 2023Wear reliability and failure mechanism of inkjet-printed conductors on paperboard substratecitations
- 2023Screen printable PANI/carbide-derived carbon supercapacitor electrode ink with chitosan bindercitations
- 2022Flexible Polymer Rectifying Diode on Plastic Foils with MoO3Hole Injection
- 2020Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitorscitations
- 2020Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitorscitations
- 2020Design of Thin, High Permittivity, Multiband, Monopole-Like Antennas
- 2019A Fully Printed Ultra-Thin Charge Amplifier for On-Skin Biosignal Measurementscitations
- 2018High-resolution E-jet Enhanced MEMS Packaging
- 2017Inkjet printing technology for increasing the I/O density of 3D TSV interposerscitations
- 2017Combination of E-jet and inkjet printing for additive fabrication of multilayer high-density RDL of silicon interposercitations
- 2016Fabrication and electrical characterization of partially metallized vias fabricated by inkjetcitations
- 2015Metallization of high density TSVs using super inkjet technologycitations
- 2010Novel Approach on Application Manufacturing Using Inkjet Printing, Laser Ablation and New Polymer Substrate
- 2009Sintering of printed nanoparticle structures using laser treatment
Places of action
Organizations | Location | People |
---|
article
A Fully Printed Ultra-Thin Charge Amplifier for On-Skin Biosignal Measurements
Abstract
In this contribution, we propose a fully printed charge amplifier for on-skin biosignal measurements. The amplifier is fabricated on an ultra-thin parylene substrate and consists of organic transistors, integrated bias and feedback resistors, and a feedback capacitor. The fabrication process utilizes inkjet-printed Ag ink for source, drain, gate, and capacitor electrode metallization as well as for the interconnects between the amplifier elements. Dispensed polystyrene, 2,7-dihexyl-dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (PS:DTBDT-C6), is used as the transistor channel material, dispensed poly(3-hexylthiophene) (P3HT) as the high-resistivity material for the printed resistors, and parylene as the capacitor dielectric. A pass band optimized for pulse-wave measurement (60 mHz to 36 Hz) is achieved with a maximum charge amplification of 1.6 V/nC. To demonstrate the potential of the proposed printed amplifier, a radial arterial pulsewave signal recorded with a printed piezoelectric poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) sensor was fed to it and the output was analyzed to quantify the similarity of the pulse-wave features calculated from the original signal and the amplifier output. The amplified signal contains all the essential features of a pulse wave, such as both systolic waves, the dicrotic notch, and diastolic wave, which enable the accurate derivation of the clinically relevant indices utilized in the evaluation of vascular health. ; Peer reviewed