People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jung, Moritz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Graphenic Carbon: A Novel Material to Improve the Reliability of Metal-Silicon Contacts
Abstract
Contact resistance and thermal degradation of metal-silicon contacts are major challenges in nanoscale CMOS as well as in power device applications. Titanium silicide (TiSi) is commonly used to establish low-barrier height contacts to silicon, in state-of-the-art FinFETs or Schottky diodes. But the metal is known to diffuse into the active region under high current stress, as during an electro-static discharge event. This work shows with a Schottky diode as test vehicle that a carbon–silicon (C–Si) contact has the same low Schottky barrier height as a TiSi–Si junction but is over 100 million times more stable against high current pulses. A Schottky barrier height between 0.36 eV and 0.45 eV can be obtained by a variation of the deposition process. This makes C–Si a promising candidate for future high current density and temperature stable contacts and even for applications that require low contact resistances.