People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kosina, Hans
TU Wien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Modeling, properties, and fabrication of a micromachined thermoelectric generator
- 2020Hierarchically nanostructured thermoelectric materials:challenges and opportunities for improved power factorscitations
- 2020Hierarchically nanostructured thermoelectric materials: challenges and opportunities for improved power factorscitations
- 2019transport of charge carriers along dislocations in si and gecitations
- 2014fast methods for full band mobility calculation
- 2014Power Factor Enhancement by Inhomogeneous Distribution of Dopants in Two-Phase Nanocrystalline Systemscitations
Places of action
Organizations | Location | People |
---|
article
fast methods for full band mobility calculation
Abstract
Accurate band structure modeling is an essential ingredient in mobility modeling for any kind of semiconductor device or channel. This is particularly true for holes as the valence band of the most commonly used semiconductor materials is not even close to being parabolic. Instead, valence bands exhibit warped energy surfaces that simply cannot be approximated with parabolic valleys. To make matters worse, nanostructured channels can have large quantization energies resulting in complex, highly orientation-dependent kinetic behavior of both holes and electrons. In this work, we present an accurate and computationally efficient method for calculating channel low-feld mobilities based on a numeric band structure from a k·p model.