People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salmi, Ari
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Preventing Formation of Metal Dendrites During Electroplating Using External Ultrasonic Actuatorscitations
- 2023Evaluation of bone growth around bioactive glass S53P4 by scanning acoustic microscopy co-registered with optical interferometry and elemental analysiscitations
- 20234D Scanning Acoustic Microscopy
- 2023Ultrasound-based surface sampling in immersion for mass spectrometrycitations
- 2022Coupling Power Ultrasound into Industrial Pipe Walls
- 2022Preventing Formation of Metal Dendrites During Electroplating Using External Ultrasonic Actuatorscitations
- 2022FEM-based time-reversal technique for an ultrasonic cleaning applicationcitations
- 2022CESAM - Coded excitation scanning acoustic microscopecitations
- 2022Identifying Regions-of-Interest and Extracting Gold from PCBs Using MHz HIFUcitations
- 20224D Scanning Acoustic Microscopy
- 2021CESAM - Coded excitation scanning acoustic microscopecitations
- 2021FEM-based time-reversal enhanced ultrasonic cleaningcitations
- 2019Coded Acoustic Microscopy to Study Wood Mechanics and Developmentcitations
- 2019Digital Eyewearcitations
- 2018Detecting Industrial Fouling by Monotonicity during Ultrasonic Cleaningcitations
- 2013Cyclic impulsive compression loading along the radial and tangential wood directions causes localized fatiguecitations
- 2008Crystallization and shear modulus of a forming biopolymer film determined by in situ x-ray diffraction and ultrasound reflection methodscitations
- 2006Measuring in-plane mechanical properties of plate-like samples using phonographic pickupscitations
Places of action
Organizations | Location | People |
---|
document
Coupling Power Ultrasound into Industrial Pipe Walls
Abstract
Ultrasonic cleaning enhances productivity in the industry and therefore reduces emissions. To this end, optimizing ultrasonic power delivery through metal walls is essential. Attaching a piezoelectric power ultrasound transducer to a metal wall dampens the fundamental resonance of the transducer. The metal wall alters the boundary condition at the transducer head from free to rigid, and therefore the antinode required for the fundamental resonance is not born at the head. To solve this limitation, we propose a novel contact interface, an airgap contact coupling (ACC).