People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salmi, Ari
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Preventing Formation of Metal Dendrites During Electroplating Using External Ultrasonic Actuatorscitations
- 2023Evaluation of bone growth around bioactive glass S53P4 by scanning acoustic microscopy co-registered with optical interferometry and elemental analysiscitations
- 20234D Scanning Acoustic Microscopy
- 2023Ultrasound-based surface sampling in immersion for mass spectrometrycitations
- 2022Coupling Power Ultrasound into Industrial Pipe Walls
- 2022Preventing Formation of Metal Dendrites During Electroplating Using External Ultrasonic Actuatorscitations
- 2022FEM-based time-reversal technique for an ultrasonic cleaning applicationcitations
- 2022CESAM - Coded excitation scanning acoustic microscopecitations
- 2022Identifying Regions-of-Interest and Extracting Gold from PCBs Using MHz HIFUcitations
- 20224D Scanning Acoustic Microscopy
- 2021CESAM - Coded excitation scanning acoustic microscopecitations
- 2021FEM-based time-reversal enhanced ultrasonic cleaningcitations
- 2019Coded Acoustic Microscopy to Study Wood Mechanics and Developmentcitations
- 2019Digital Eyewearcitations
- 2018Detecting Industrial Fouling by Monotonicity during Ultrasonic Cleaningcitations
- 2013Cyclic impulsive compression loading along the radial and tangential wood directions causes localized fatiguecitations
- 2008Crystallization and shear modulus of a forming biopolymer film determined by in situ x-ray diffraction and ultrasound reflection methodscitations
- 2006Measuring in-plane mechanical properties of plate-like samples using phonographic pickupscitations
Places of action
Organizations | Location | People |
---|
document
Preventing Formation of Metal Dendrites During Electroplating Using External Ultrasonic Actuators
Abstract
Metal dendrites are tree-like formations caused by the uneven deposition of ions onto a substrate. In electroplating, dendrites are generally undesired due to the resultant uneven and brittle surface. Furthermore, in metal batteries dendritic growth irreversibly consumes active metals and can eventually cause a short-circuit between the electrodes. Applying ultrasound to reduce dendrite growth has previously been achieved with integrated actuators. However, implementation of integrated actuation has significant drawbacks: it compromises optimal design and needs to be incorporated in early development, since retrofitting to existing designs is cumbersome or impossible. External actuation would solve these limitations. We show that external ultrasound reduces non-uniform dendrite growth during electroplating up to a threshold deposition current. Below the threshold dendrite growth was significantly inhibited and a uniform plating was formed. The results demonstrate that external ultrasonic transducers could be retrofitted to existing systems to suppress dendrite growth.