Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thanou, Maya

  • Google
  • 4
  • 13
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Manipulating the Barrier Function of a Cell Monolayer Using a High-power Miniature Ultrasonic Transducer1citations
  • 2019Examination of zinc ferrites vs. iron oxides as contrast agents for microwave systemscitations
  • 2018CHAPTER 9citations
  • 2018Zinc oxide nanoparticles as contrast-enhancing agents for microwave imaging19citations

Places of action

Chart of shared publication
Näthke, Inke
1 / 1 shared
Turcanu, Mihnea V.
1 / 1 shared
Moldovan, Alexandru C.
1 / 1 shared
Cochran, Sandy
1 / 33 shared
Kosmas, Panagiotis
3 / 13 shared
Rahman, Mohammed
2 / 4 shared
Hernandez-Gil, Javier
1 / 1 shared
Lahri, Rachita
2 / 2 shared
Long, Nicholas
1 / 2 shared
Lahri, R.
1 / 1 shared
Kallos, T.
1 / 1 shared
Rahman, M.
1 / 12 shared
Wright, Michael
1 / 1 shared
Chart of publication period
2021
2019
2018

Co-Authors (by relevance)

  • Näthke, Inke
  • Turcanu, Mihnea V.
  • Moldovan, Alexandru C.
  • Cochran, Sandy
  • Kosmas, Panagiotis
  • Rahman, Mohammed
  • Hernandez-Gil, Javier
  • Lahri, Rachita
  • Long, Nicholas
  • Lahri, R.
  • Kallos, T.
  • Rahman, M.
  • Wright, Michael
OrganizationsLocationPeople

article

Manipulating the Barrier Function of a Cell Monolayer Using a High-power Miniature Ultrasonic Transducer

  • Näthke, Inke
  • Turcanu, Mihnea V.
  • Moldovan, Alexandru C.
  • Cochran, Sandy
  • Thanou, Maya
Abstract

<p>Ultrasound (US) and cavitation agents such as microbubbles (MBs) have been demonstrated to decrease the barrier function of endothelial and epithelial layers. However, in vitro experiments that study this effect are often hindered by the inability to deliver buoyant contrast agents in proximity to cell monolayers in order to adequately control the decrease in barrier function whilst insonating a sufficiently large tissue area. We have addressed this by adapting a cell culture system and fabricating a bespoke high-power miniature unfocused US transducer. The setup was used to control the drop in barrier function and to determine how varying the mechanical index (MI) and the duty cycle affected the barrier function. It was found that buffer solution alone and buffer + MBs did not decrease the transepithelial electrical resistance (TEER) of the cell monolayer. Buffer + US decreased the TEER by 40%, with 10% TEER recovery 9 min after switching US off. Buffer + MBs + US decreased the TEER by 80%, with little or no recovery following treatment. In the presence of MBs, the barrier function was decreased by a duty cycle = [1% - 50%] and by an MI = [0.25 - 0.5], without any recovery following treatment. Detectable amounts of fluorescent dextran were delivered across the Caco-2 monolayer only by a combination of US + MBs. These results suggest that our adapted setup and custom-built miniature transducer permits control of the decrease in barrier function for further therapeutic investigations. </p>

Topics
  • experiment
  • ultrasonic