People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hafezi, Mahshid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024High Stiffness Resin for Flexural Ultrasonic Transducers
- 2024Characterisation of 3D Printable Material for an Acoustic Metamaterial Cell with Tuneable Resonancecitations
- 2023Flexural ultrasonic transducers with nonmetallic membranes
- 2023Microscale Nitinol Hardness Measurements for Engineering Adaptive Ultrasonic Devices
- 2023Fabrication and Dynamic Characterisation of a Nitinol Langevin Transducer
- 2022Enhanced Resolution Phase Transformations in a Nitinol Cymbal Ultrasonic Devicecitations
Places of action
Organizations | Location | People |
---|
document
Flexural ultrasonic transducers with nonmetallic membranes
Abstract
<p>The flexural ultrasonic transducer is a sensor primarily composed of a circular metallic membrane, to which a piezoelectric ceramic disc is bonded. The vibrations generated from the piezoelectric ceramic stimulate plate modes in the membrane, thereby generating ultrasound waves. FUTs are typically utilized for industrial and proximity measurement, but there has been growing research activity in recent years focusing on alternative applications, such as those requiring elevated pressure and temperature. The membrane of the FUT remains limited to circular metallic configurations, but there are opportunities for more complex and targeted ultrasound responses if the physical properties and shape of the membrane can be manipulated. These can include focused ultrasound beams, enhanced bandwidth, and the generation of higher order modes at desirable frequencies for measurement. The aim of this study is to investigate the viability of using nonmetallic materials such as acrylics, including through 3D printing, to tailor membrane design, and thus FUT dynamics.</p>