People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kang, Lei
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024High Stiffness Resin for Flexural Ultrasonic Transducers
- 2024High Frequency Air-Coupled Ultrasound Measurement with the Flexural Ultrasonic Transducer
- 2023Flexural ultrasonic transducers with nonmetallic membranes
- 2023Numerical investigation of unidirectional generation and reception of circumferential shear horizontal guided waves for defect detection in pipecitations
- 2022Numerical investigation of application of unidirectional generation to improve signal interpretation of circumferential guided waves in pipes for defect detectioncitations
- 2022Numerical investigation of application of unidirectional generation to improve signal interpretation of circumferential guided waves in pipes for defect detectioncitations
- 2021Active damping of ultrasonic receiving sensors through engineered pressure wavescitations
- 2021Higher order modal dynamics of the flexural ultrasonic transducercitations
- 2021Unidirectional shear horizontal wave generation by periodic permanent magnets electromagnetic acoustic transducer with dual linear-coil arraycitations
- 2021Oil filled flexural ultrasonic transducers for resilience in environments of elevated pressurecitations
- 2020Venting in the comparative study of flexural ultrasonic transducers to improve resilience at elevated environmental pressure levelscitations
- 2020The high frequency flexural ultrasonic transducer for transmitting and receiving ultrasound in aircitations
- 2020The nonlinear dynamics of flexural ultrasonic transducers
- 2020Ultrasonic transducer
- 2020Measurement using flexural ultrasonic transducers in high pressure environmentscitations
- 2019Dynamic nonlinearity in piezoelectric flexural ultrasonic transducerscitations
- 2019Dynamic nonlinearity in piezoelectric flexural ultrasonic transducerscitations
- 2019The Nonlinear Dynamics of Flexural Ultrasonic Transducers
- 2019Wideband electromagnetic dynamic acoustic transducer as a standard acoustic source for air-coupled ultrasonic sensorscitations
- 2018Dynamic characteristics of flexural ultrasonic transducerscitations
- 2018HiFFUTs for high temperature ultrasound
- 2018Nonlinearity in the dynamic response of flexural ultrasonic transducerscitations
- 2018High-frequency measurement of ultrasound using flexural ultrasonic transducerscitations
- 2018Nonlinearity in the dynamic response of the flexural ultrasonic transducerscitations
- 2018The dynamic performance of flexural ultrasonic transducerscitations
- 2017HiFFUTs for High Temperature Ultrasound
- 2017Dynamic Characteristics of Flexural Ultrasonic Transducerscitations
- 2016High temperature flexural ultrasonic transducer for non-contact measurement applicationscitations
Places of action
Organizations | Location | People |
---|
document
Flexural ultrasonic transducers with nonmetallic membranes
Abstract
<p>The flexural ultrasonic transducer is a sensor primarily composed of a circular metallic membrane, to which a piezoelectric ceramic disc is bonded. The vibrations generated from the piezoelectric ceramic stimulate plate modes in the membrane, thereby generating ultrasound waves. FUTs are typically utilized for industrial and proximity measurement, but there has been growing research activity in recent years focusing on alternative applications, such as those requiring elevated pressure and temperature. The membrane of the FUT remains limited to circular metallic configurations, but there are opportunities for more complex and targeted ultrasound responses if the physical properties and shape of the membrane can be manipulated. These can include focused ultrasound beams, enhanced bandwidth, and the generation of higher order modes at desirable frequencies for measurement. The aim of this study is to investigate the viability of using nonmetallic materials such as acrylics, including through 3D printing, to tailor membrane design, and thus FUT dynamics.</p>