People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Giagka, Vasiliki
Fraunhofer Institute for Reliability and Microintegration
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Non-monolithic fabrication of thin-film microelectrode arrays on PMUT transducers as a bimodal neuroscientific investigation toolcitations
- 2023Non-monolithic fabrication of thin-film microelectrode arrays on PMUT transducers as a bimodal neuroscientific investigation toolcitations
- 2023A Comparative Study of Si3N4 and Al2O3 as Dielectric Materials for Pre-Charged Collapse-Mode CMUTscitations
- 2023An Ultrasonically Powered System Using an AlN PMUT Receiver for Delivering Instantaneous mW-Range DC Power to Biomedical Implantscitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimationcitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimationcitations
- 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfacescitations
- 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfacescitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implantscitations
- 2021Silicone encapsulation of thin-film SiOx , SiOx Ny and SiC for modern electronic medical implantscitations
- 2021Silicone encapsulation of thin-film SiO x , SiO x N y and SiC for modern electronic medical implants: A comparative long-term ageing studycitations
- 2021Silicone encapsulation of thin-film SiOx, SiOxNy and SiC for modern electronic medical implants: a comparative long-term ageing studycitations
- 2021Silicone encapsulation of thin-film SiOx, SiOxNy and SiC for modern electronic medical implants
- 2020Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studies
- 2020Long-term encapsulation of platinum metallization using a HfO2 ALD - PDMS bilayer for non-hermetic active implantscitations
- 2019Effect of Signals on the Encapsulation Performance of Parylene Coated Platinum Tracks for Active Medical Implantscitations
- 2019The influence of soft encapsulation materials on the wireless power transfer links efficiency
- 2019Towards an Active Graphene-PDMS Implant
- 2018MEMS-Electronics Integration 2: A Smart Temperature Sensor for an Organ-on-a-chip Platform
- 2015Flexible active electrode arrays with ASICs that fit inside the rat's spinal canalcitations
Places of action
Organizations | Location | People |
---|
document
An Ultrasonically Powered System Using an AlN PMUT Receiver for Delivering Instantaneous mW-Range DC Power to Biomedical Implants
Abstract
Aluminum Nitride (AlN) Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) are gaining interest for biomedical implant power due to biocompatibility and lowtemperature processing. However, due to the low piezoelectric coefficient of AlN PMUTs, storage capacitors are often used to accumulate ultrasonic power transferred over an extended time. The accumulated energy is then used to power a DC load, which leads to a long start-up time, and insufficient duty cycle for some applications. We present an ultrasonically powered system for biomedical implants capable of delivering mW-range instantaneous power to DC loads, without pre-storing it. The system features a 25 mm2 AlN PMUT, an inductive matching network, and an application-specific power management integrated circuit(ASIC). For an acoustic intensity of 360 mW/cm2 at the surface of the PMUT, an open-circuit voltage of 1.11 V and an aperture efficiency of 30.5 % are measured. Furthermore, by connecting a series-matching inductor to the PMUT, the highest-reported power delivered to the load (PDL) of 6.4 mW is measured over an optimal load of 7.6 Ω. Finally, together with the ASIC and at the intensity of 108 mW/cm2, our system delivers 1.04 mW DC power to a 3.3 kΩ load, which is over two orders of magnitude higher than the previously reported average DC power for AlN PMUTs.