People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oleary, Richard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2021Fabrication and characterization of a novel photoactive based (0-3) piezocomposite material with potential as a functional material for additive manufacturing of piezoelectric sensorscitations
- 2020Characterization of (0-3) piezocomposite materials for transducer applicationscitations
- 2019Developing a 3D printable electret material for sensing applications
- 2018Linear ultrasonic array design using cantor set fractal geometrycitations
- 2018Broadband 1-3 piezoelectric composite transducer design using Sierpinski Gasket fractal geometrycitations
- 2018Broadband piezocrystal transducer array for non-destructive evaluation imaging applicationscitations
- 2017Linear ultrasonic array incorporating a Cantor Set fractal element configuration
- 2016Improving the operational bandwidth of a 1-3 piezoelectric composite transducer using Sierpinski Gasket fractal geometry
- 2015An investigation in to the effects of recycling of Ti-6Al-4V powders used within selective laser melting
- 2015System modeling and device development for passive acoustic monitoring of a particulate-liquid processcitations
- 2015Accurate finite element model of equiaxed-grain engineering material for ultrasonic inspection
- 2014Application of conformal map theory for design of 2-D ultrasonic array structure for ndt imaging applicationcitations
- 2012High intensity focused ultrasound array transducers using 2-2 stacked piezoelectric composite appropriate for sonochemisrty applicationcitations
- 2012Ultrasonic imaging of electrofusion welded polythene pipes employed in utilities industry
- 2010An annular array with fiber composite microstructure for far field NDT imaging applicationscitations
- 2010Properties of photocured epoxy resin materials for application in piezoelectric ultrasonic transducer matching layerscitations
- 2010Hexagonal array structure for 2D NDE applicationscitations
- 2010A wideband annular piezoelectric composite transducer configuration with a graded active layer profilecitations
- 2009Numerical optimisation of piezocomposite material properties using 3D finite - element modeling
- 2009The causal differential scattering approach to calculating the effective properties of random composite materials with a particle size distribution
- 2008Harmonic analysis of lossy piezoelectric composite transducers using the plane wave expansion methodcitations
- 2008Analysis of ultrasonic transducers with fractal architecturecitations
- 2008Enhancing the performance of piezoelectric ultrasound transducers by the use of multiple matching layerscitations
- 2007Simulation of the influence of hydrophones used for the characterization of pressure field distribution in low frequency, high power ultrasonic reactor vesselscitations
- 2007Investigating the influence of the constituent materials on the performance of periodic piezoelectric composite arrayscitations
- 2007Theoretical modelling of frequency dependent elastic loss in composite piezoelectric transducerscitations
Places of action
Organizations | Location | People |
---|
document
Characterization of (0-3) piezocomposite materials for transducer applications
Abstract
<p>In this study, we have developed and characterized two different (0-3) piezoelectric composite materials with potential to be used in sensing applications. The composite materials were made using Polydimethylsiloxane (PDMS) as the polymer matrix with Barium Titanate (BaTiO3), and Lead Zirconate Titanate (PZT51) as the dielectric fillers. Thin film samples of the (0-3) piezocomposites were prepared using a solution mixing and spin coating method to produce composites with (0-3) connectivity pattern and layer thickness of mathbf{100} mumathbf{m}, The microstructure of the piezocomposites were analyzed using a scanning electron microscope to determine the connectivity structure and homogeneity of the piezocomposites. The mechanical properties of the composites were determined using the method of Oliver and Pharr. FTIR analysis was used to determine the effects of the fillers on the structure of the piezocomposite. The average piezoelectric pmb{d}{mathit{33}} coefficient of the piezocomposites were also measured using the laser vibrometer technique and determined to be 30 pm/V for the piezocomposite consisting of Barium Titanate (BaTiO3) and 32 pm/V for the piezocomposite consisting of Lead Zirconate Titanate (PZT51).</p>