People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ramesh, Anisha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
200-mm CVD grown Si/SiGe resonant interband tunnel diodes optimized for high peak-to-valley current ratios
Abstract
<p>Negative differential resistance (NDR) devices in conjunction with MOS transistors provide a high speed, low power alternate to complementary metal oxide semiconductor (CMOS) technology. Boolean logic with gate-level pipelining has been demonstrated using monostable-bistable logic (MOBILE) gates. Application to low-power embedded memory is also promising. A key hurdle for tunneling based devices is development of a manufacturable process that can be integrated into a CMOS process line. Monolithic integration of low- temperature molecular beam epitaxy (LT-MBE) grown Si/SiGe resonant interband tunnel diodes (RITD) with NMOS has been demonstrated. However, chemical vapor deposition (CVD) is the dominant epitaxial growth technique for semiconductor manufacturing. The first CVD grown Si/SiGe RITD was demonstrated with a peak-to-valley current ratio (PVCR) of 1.85. In this work, further optimization of boron -doping has resulted in high PVCR up to 5.2. Current density dependence on tunneling barrier thickness is also investigated.</p>