Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Myśliwiec, Marcin

  • Google
  • 13
  • 25
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2022Influence of Ag particle shape on mechanical and thermal properties of TIM joints4citations
  • 2022Pressureless Direct Bonding of Au Metallized Substrate with Si Chips by Micro-Ag Particles4citations
  • 2019Development of SLID Bonding Technology for GaN Assembly Based on Ag Microflakes2citations
  • 2018Solid-Liquid Interdiffusion Bonding Based on Au-Sn Intermetallic for High Temperature Applications4citations
  • 2017Combination of Solid-Liquid Interdiffusion and Sintering Bonding for GaN Devices Assembly5citations
  • 2017Fluxless Pressure Ag Sintering in Creation of Au-Ag Connection Systemscitations
  • 2016Properties of silicon nitride thin overlays deposited on optical fibers – effect of fiber suspension in radio frequency plasma-enhanced chemical vapor deposition reactor4citations
  • 2016Challenges in packaging of IR detectors – technology of elastic electrical connections2citations
  • 2016Die attach by diffusion Sn-Ag-Sn soldering in high temperature electronics applications2citations
  • 2016Application of Direct Bonded Copper Substrates for Prototyping of Power Electronic Modules6citations
  • 2015Challenges in packaging of IR detectors – technology of elastic electrical connectionscitations
  • 2014Materials and Technological Aspects of High-Temperature SiC Package Reliabilitycitations
  • 2014Thermal characteristics of SiC diode assembly to ceramic substrate1citations

Places of action

Chart of shared publication
Kruszewski, Mirosław
2 / 16 shared
Kisiel, Ryszard
12 / 20 shared
Pavłov, Krystian
1 / 1 shared
Kwietniewski, Norbert
2 / 15 shared
Mikulic, Predrag
1 / 1 shared
Witkowski, Bartłomiej S.
1 / 2 shared
Śmietana, Mateusz Jakub
1 / 3 shared
Bock, Wojtek J.
1 / 1 shared
Dominik, Magdalena
1 / 1 shared
Weremczuk, Jerzy
2 / 3 shared
Wiatr, Wojciech
2 / 2 shared
Szczepański, Zbigniew
2 / 4 shared
Lewandowski, Arkadiusz
2 / 24 shared
Fałat, Tomasz
1 / 1 shared
Maćków, Piotr
1 / 1 shared
Grzesiak, Wojciech
1 / 1 shared
Żupnik, Marek
1 / 1 shared
Serzysko, Tomasz
1 / 1 shared
Borecki, Janusz
1 / 1 shared
Witek, Krzysztof
1 / 1 shared
Synkiewicz, Beata
1 / 1 shared
Maj, Tomasz
1 / 1 shared
Guziewicz, Marek
2 / 10 shared
Kraśniewski, J.
1 / 1 shared
Janke, Włodzimierz
1 / 1 shared
Chart of publication period
2022
2019
2018
2017
2016
2015
2014

Co-Authors (by relevance)

  • Kruszewski, Mirosław
  • Kisiel, Ryszard
  • Pavłov, Krystian
  • Kwietniewski, Norbert
  • Mikulic, Predrag
  • Witkowski, Bartłomiej S.
  • Śmietana, Mateusz Jakub
  • Bock, Wojtek J.
  • Dominik, Magdalena
  • Weremczuk, Jerzy
  • Wiatr, Wojciech
  • Szczepański, Zbigniew
  • Lewandowski, Arkadiusz
  • Fałat, Tomasz
  • Maćków, Piotr
  • Grzesiak, Wojciech
  • Żupnik, Marek
  • Serzysko, Tomasz
  • Borecki, Janusz
  • Witek, Krzysztof
  • Synkiewicz, Beata
  • Maj, Tomasz
  • Guziewicz, Marek
  • Kraśniewski, J.
  • Janke, Włodzimierz
OrganizationsLocationPeople

document

Die attach by diffusion Sn-Ag-Sn soldering in high temperature electronics applications

  • Myśliwiec, Marcin
  • Fałat, Tomasz
  • Kisiel, Ryszard
Abstract

The aim of this work was assessment of application diffusion soldering in die attachment for the electronic devices operating at temperatures above 300 °C. Assembly process was based on the intermetallic compound formation in Sn, Cu and Ag systems at temperatures above Sn melting point. New-created compounds should be thermally stable in high temperatures. The influence of the following parameters: temperature, pressure, process time and application of flux on mechanical strength (shear strength) was investigated. It was concluded that mechanical strength of joints is good and influence of some of the process parameters is stronger than others. The best soldering results were achieved for process were flux was applied, temperature at 395 °C, pressure higher than 10 MPa, and process time longer than 10 minutes. In the next series of experiment the soldering temperature was decreased to the range 270 °C ÷ 300 °C and still good mechanical strength of joint was possible. In diffusion soldering it is necessary to apply no-clean flux. It makes soldering process easier and better mechanical properties were achieved.

Topics
  • impedance spectroscopy
  • compound
  • experiment
  • strength
  • intermetallic