People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khiat, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2019An electrical characterisation methodology for identifying the switching mechanism in TiO2 memristive stackscitations
- 2019A digital in-analogue out logic gate based on metal-oxide memristor devices
- 2019An electrical characterisation methodology for identifying the switching mechanism in TiO 2 memristive stackscitations
- 2018Processing big-data with memristive technologiescitations
- 2018A comprehensive technology agnostic RRAM characterisation protocol
- 2018Interface barriers at Metal – TiO2 contacts
- 2017Impact of ultra-thin Al2O3–y layers on TiO2–x ReRAM switching characteristicscitations
- 2017Impact of ultra-thin Al 2 O 3–y layers on TiO 2–x ReRAM switching characteristicscitations
- 2016X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devicescitations
- 2016An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margincitations
- 2016Engineering the switching dynamics of TiOx-based RRAM with Al dopingcitations
- 2016Al-doping engineered electroforming and switching dynamics of TiOx ReRAM devices
Places of action
Organizations | Location | People |
---|
document
Processing big-data with memristive technologies
Abstract
An important cornerstone of data processing is the ability to efficiently capture structure in data. This entails treating the input space as a hyperplane that needs partitioning. We argue that several modern electronic systems can be understood as carrying out such partitionings: from standard logic gates to Artificial Neural Networks (ANNs). More recently, memristive technologies equipped such systems with the benefit of continuous tunability directly in hardware, thus rendering these reconfigurable in a power and space efficient manner. Here, we demonstrate several proof-of-concept examples where memristors enable circuits optimised to carry out different flavours of the fundamental task of splitting the hyperplane. These include threshold logic and receptive field based classifiers that are presented within the context of a unified perspective.