People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Ruomeng
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Electrodeposition of bismuth, tellurium and bismuth telluride through sub-10 nm mesoporous silica thin filmscitations
- 2022Tungsten(VI) selenide tetrachloride, WSeCl 4 - synthesis, properties, coordination complexes and application of [WSeCl 4 (SenBu 2 )] for CVD growth of WSe 2 thin filmscitations
- 2021Low pressure CVD of GeE (E = Te, Se, S) thin films from alkylgermanium chalcogenolate precursors and effect of the deposition temperature on the thermoelectric performance of GeTecitations
- 2021Low pressure CVD of GeE (E = Te, Se, S) thin films from alkylgermanium chalcogenolate precursors and effect of the deposition temperature on the thermoelectric performance of GeTecitations
- 2021Low temperature CVD of thermoelectric SnTe thin films from the single source precursor, [nBu3Sn(TenBu)]citations
- 2021Low temperature CVD of thermoelectric SnTe thin films from the single source precursor, [nBu3Sn(TenBu)]citations
- 2020Thermoelectric properties of bismuth telluride thin films electrodeposited from a non-aqueous solutioncitations
- 2020Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applicationscitations
- 2020Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generatorscitations
- 2020Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour depositioncitations
- 2020Improved thermoelectric performance of Bi 2 Se 3 alloyed Bi 2 Te 3 thin films via low pressure chemical vapour depositioncitations
- 2019Electrochemical metallization ReRAMs (ECM) - Experiments and modellingcitations
- 2018Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodepositioncitations
- 2018Electrodeposition of a functional solid state memory material – germanium antimony telluride from a non-aqueous plating bathcitations
- 2017Selection by current compliance of negative and positive bipolar resistive switching behaviour in ZrO2−x/ZrO2 bilayer memorycitations
- 2016Forming-free resistive switching of tunable ZnO films grown by atomic layer depositioncitations
- 2016Nanoscale arrays of antimony telluride single crystals by selective chemical vapor depositioncitations
- 2015Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivitycitations
- 2015Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge2Sb2Te5phase change memorycitations
- 2015Phase-change memory properties of electrodeposited Ge-Sb-Te thin filmcitations
- 2014The effect of atomic layer deposition temperature on switching properties of HfOx resistive RAM devicescitations
- 2013Non-aqueous electrodeposition of metals and metalloids from halometallate saltscitations
- 2013Low pressure chemical vapour deposition of crystalline Ga2Te3 and Ga2Se3 thin films from single source precursors using telluroether and selenoether complexescitations
- 2013Telluroether and selenoether complexes as single source reagents for low pressure chemical vapor deposition of crystalline Ga2Te3 and Ga2Se3 thin filmscitations
- 2012Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether precursorscitations
Places of action
Organizations | Location | People |
---|
document
The effect of atomic layer deposition temperature on switching properties of HfOx resistive RAM devices
Abstract
TiN/HfO<sub>x</sub>/TiN resistive RAM (RRAM) devices have been fabricated where the hafnium oxide layer has been deposited at three different temperatures via atomic layer deposition (ALD). Material characterization shows the structure of the hafnium oxide is converted from cubic to monoclinic for 400 degrees C. Elemental analysis shows that the temperature affects the stoichiometric behavior of hafnium oxide, with a higher oxygen concentration at 350 degrees C and above. The switching behavior differs significantly for each device whereby the 400 degrees C device shows no successful switching, due to the change in structure to monoclinic. The two lower temperatures both show successful bipolar switching which set at negative voltages. The 300 degrees C device has a higher R<sub>off</sub>/R<sub>on</sub> of 13.9, with superior endurance. The 350 degrees C device has a lower R<sub>off</sub>/R<sub>on</sub> of 5.5 and shows deterioration in switching properties as the number of cycles are increased. At 300 degrees C, the oxygen hafnium ratio is at a minimum; hence the greatest amount of oxygen vacancies are present, which results in improved switching characteristics. This supports the theory that oxygen vacancies play a key role in the switching mechanism for metal oxide RRAM devices.