Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kupnik, M.

  • Google
  • 2
  • 19
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016High temperature flexural ultrasonic transducer for non-contact measurement applications4citations
  • 2007Capacitive micromachined ultrasonic transducers for chemical detection in nitrogen83citations

Places of action

Chart of shared publication
Eriksson, T. J. R.
1 / 1 shared
Kang, Lei
1 / 28 shared
Ramadas, S. N.
1 / 4 shared
Burrows, S. E.
1 / 4 shared
Unger, A.
1 / 1 shared
Dixon, S. M.
1 / 1 shared
Braun, Thomas
1 / 7 shared
Khuri-Yakub, B. T.
1 / 1 shared
Quate, C. F.
1 / 1 shared
Oralkan, Ö.
1 / 1 shared
Ergun, A. S.
1 / 5 shared
Yaralioglu, G. G.
1 / 3 shared
Park, K. K.
1 / 1 shared
Gimzewski, J. K.
1 / 1 shared
Ramseyer, J.-P.
1 / 1 shared
Lee, H. J.
1 / 7 shared
Hegner, M.
1 / 1 shared
Gerber, Ch.
1 / 1 shared
Lang, H. P.
1 / 1 shared
Chart of publication period
2016
2007

Co-Authors (by relevance)

  • Eriksson, T. J. R.
  • Kang, Lei
  • Ramadas, S. N.
  • Burrows, S. E.
  • Unger, A.
  • Dixon, S. M.
  • Braun, Thomas
  • Khuri-Yakub, B. T.
  • Quate, C. F.
  • Oralkan, Ö.
  • Ergun, A. S.
  • Yaralioglu, G. G.
  • Park, K. K.
  • Gimzewski, J. K.
  • Ramseyer, J.-P.
  • Lee, H. J.
  • Hegner, M.
  • Gerber, Ch.
  • Lang, H. P.
OrganizationsLocationPeople

document

High temperature flexural ultrasonic transducer for non-contact measurement applications

  • Eriksson, T. J. R.
  • Kang, Lei
  • Ramadas, S. N.
  • Burrows, S. E.
  • Kupnik, M.
  • Unger, A.
  • Dixon, S. M.
Abstract

<p>A prototype flexural ultrasound transducer capable of operating at high temperatures was designed for noncontact measurement applications. A doped bismuth titanate was used as the piezoelectric element; the construction of the transducer was designed using materials and bonding capable of operating at temperatures up to 500°C. The bismuth titanate was characterised by X-ray diffraction, differential thermal analysis and impedance analysis; the transducer response was measured using laser interferometry at room temperature. The resulting frequency spectrum showed clear resonance peaks, indicative of an operational flexural transducer.</p>

Topics
  • x-ray diffraction
  • ultrasonic
  • differential thermal analysis
  • Bismuth
  • interferometry