People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dixon, S. M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
High temperature flexural ultrasonic transducer for non-contact measurement applications
Abstract
<p>A prototype flexural ultrasound transducer capable of operating at high temperatures was designed for noncontact measurement applications. A doped bismuth titanate was used as the piezoelectric element; the construction of the transducer was designed using materials and bonding capable of operating at temperatures up to 500°C. The bismuth titanate was characterised by X-ray diffraction, differential thermal analysis and impedance analysis; the transducer response was measured using laser interferometry at room temperature. The resulting frequency spectrum showed clear resonance peaks, indicative of an operational flexural transducer.</p>