People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arredondo-Arechavala, Miryam
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticlescitations
- 2023Intensifying levulinic acid hydrogenation using mechanochemically prepared copper on manganese oxide catalystscitations
- 2022Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sievescitations
- 2022Insights into selective hydrogenation of levulinic acid using copper on manganese oxide octahedral molecular sievescitations
- 2021ZnO nucleation into trititanate nanotubes by ALD equipment techniques, a new way to functionalize layered metal oxidescitations
- 2021Importance of overcoming MOVPE surface evolution instabilities for >1.3 μm metamorphic lasers on GaAscitations
- 2018Giant Resistive Switching in Mixed Phase BiFeO3 via phase population controlcitations
- 2017Non-equilibrium ferroelectric-ferroelastic 10nm nanodomains: wrinkles, period-doubling and power-law relaxationcitations
- 2017Non-equilibrium ferroelectric-ferroelastic 10nm nanodomains: wrinkles, period-doubling and power-law relaxationcitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2017Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramiccitations
- 2014Epitaxial ferroelectric Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 thin films on La 0.7 Sr 0.3 MnO 3 bottom electrodecitations
- 2014Studies of the Room-Temperature Multiferroic Pb(Fe0.5Ta0.5)0.4(Zr0.53Ti0.47)0.6O3: Resonant Ultrasound Spectroscopy, Dielectric, and Magnetic Phenomenacitations
- 2014Epitaxial ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films on La0.7Sr0.3MnO3 bottom electrodecitations
- 2013Strain dependent microstructural modifications of BiCrO3 epitaxial thin filmscitations
- 2011Microstructural analysis of interfaces in a ferromagnetic- multiferroic epitaxial heterostructurecitations
- 2011Chemistry of Ruddlesden-Popper planar faults at a ferroelectric-ferromagnet perovskite interfacecitations
- 2010Synthesis of epitaxial metal oxide nanocrystals via a phase separation approachcitations
- 2008Role of misfit dislocations in ferroelectric thin films CH031
Places of action
Organizations | Location | People |
---|
document
Role of misfit dislocations in ferroelectric thin films CH031
Abstract
<p>We present a systematic study on the nanoscale chemistry around misfit dislocations (MDs) in ferroelectric thin films, to attribute their effects on the reported degradation of physical properties.[1] The quality of the interface was examined using High Resolution Transmission Electron Microscopy (HRTEM) investigations, acquired on the following model heterostructures -(a) PbZr <sub>0.52</sub>Ti<sub>0.48</sub>O<sub>3</sub> (PZT 52/48) with a very large misfit, and hence high density of dislocations, (b) an excellent lattice-matched PbZr<sub>0.20</sub>Ti<sub>0.80</sub>O<sub>3</sub> | (PZT 20/80) and (c) BaTiO<sub>3</sub> (BTO). All three films were deposited on SrRuO<sub>3</sub> buffered | SrTiO<sub>3</sub>. We map the chemical changes across the interfaces, around the MDs via Energy Dispersive X-Ray Spectroscopy (EDS) and Energy-Filtered TEM (EFTEM). In the case for an interface with high density of MDs there is a significant mixing of chemical species; particularly Pb from the PZT is found in the electrode layer. Hence, the severe lattice distortion at the core of the dislocations have a profound impact on the local chemistry; by changing electronic structure as well as chemical species at the atomic interface. We postulate that these local chemical changes drastically affect important physical properties such as, the polarization, piezoelectric and the dielectric response.</p>