Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liu, Hongbin

  • Google
  • 2
  • 11
  • 159

King's College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Design of a soft, parallel end-effector applied to robot-guided ultrasound interventions24citations
  • 2015Macrobend optical sensing for pose measurement in soft robot arms135citations

Places of action

Chart of shared publication
Soor, Avinash
1 / 1 shared
Rhode, Kawal
1 / 1 shared
Hutchinson, Jack
1 / 1 shared
Shafi, Amber
1 / 1 shared
Back, Junghwan
1 / 1 shared
Lindenroth, Lukas
1 / 1 shared
Sareh, Sina
1 / 7 shared
Li, Min
1 / 10 shared
Althoefer, Kaspar
1 / 1 shared
Ranzani, Tommaso
1 / 1 shared
Noh, Yohan
1 / 2 shared
Chart of publication period
2017
2015

Co-Authors (by relevance)

  • Soor, Avinash
  • Rhode, Kawal
  • Hutchinson, Jack
  • Shafi, Amber
  • Back, Junghwan
  • Lindenroth, Lukas
  • Sareh, Sina
  • Li, Min
  • Althoefer, Kaspar
  • Ranzani, Tommaso
  • Noh, Yohan
OrganizationsLocationPeople

booksection

Design of a soft, parallel end-effector applied to robot-guided ultrasound interventions

  • Soor, Avinash
  • Rhode, Kawal
  • Hutchinson, Jack
  • Shafi, Amber
  • Back, Junghwan
  • Liu, Hongbin
  • Lindenroth, Lukas
Abstract

<p>Medical ultrasound imaging robotics systems often comprise of complex control architectures and hardware integration to enable safe human robot interaction. In this paper, we investigate the applicability of a soft robotic end-effector for ultrasound intervention. A novel, parallel design is derived based on the medical requirements, which addresses common shortcomings in both robotic ultrasound systems and soft robotic devices. Individual actuators are developed and characterized and the performance of the overall platform is evaluated in regards to its stiffness and steerability. It is shown that the platform comprises relatively high longitudinal and transversal stiffness, while still being compliant enough to ensure the safety of the patient. The shear stiffness of the platform is 4.2 times greater than the shear stiffness of an individual actuator. The platform is capable of applying loadings of 10N along its longitudinal axis, which makes it suitable for the given application. Furthermore, the workspace of the platform is suitable to robot-guided ultrasound with a maximum platform rotation range of ±14.8°, while only moving ±7mm in space.</p>

Topics
  • impedance spectroscopy