People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burton, Oliver J.
University of Cambridge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022The Effects of Surfaces and Surface Passivation on the Electrical Properties of Nanowires and Other Nanostructures
- 2022Defect seeded remote epitaxy of GaAs films on graphene.
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene.
- 2020High-throughput electrical characterization of nanomaterials from room to cryogenic temperaturescitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of Au substrate for simple organosulfur precursors.
- 2020Integrated wafer scale growth of single crystal metal films and high quality graphenecitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS<sub>2</sub>: the enhancing role of Au substrate for simple organosulfur precursors.
Places of action
Organizations | Location | People |
---|
document
The Effects of Surfaces and Surface Passivation on the Electrical Properties of Nanowires and Other Nanostructures
Abstract
<p>The electrical properties of nanomaterials are strongly influenced by their surfaces, which in turn are strongly influenced by device processing and passivation procedures. Optical pump-terahertz probe spectroscopy is ideal for measuring the native properties of these materials, determining the changes induced by device processing, and studying the effectiveness of surface passivation procedures. Here we study the electronic properties of III-V nanowires and other nanomaterials in both their native and encapsulated/integrated states, which is uniquely possible with terahertz spectroscopy.</p>