Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thoen, David

  • Google
  • 10
  • 35
  • 85

SRON Netherlands Institute for Space Research

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2022Model and Measurements of an Optical Stack for Broadband Visible to Near-Infrared Absorption in TiN MKIDs6citations
  • 2022Hydrogenated Amorphous Silicon Carbide12citations
  • 2021Highly-conformal sputtered through-silicon vias with sharp superconducting transition8citations
  • 2021Highly-conformal sputtered through-silicon vias with sharp superconducting transition8citations
  • 2021Superconducting Microstrip Losses at Microwave and Submillimeter Wavelengths20citations
  • 2020Fabrication of Al-based superconducting high-aspect ratio TSVs for quantum 3D integration4citations
  • 2020Fabrication of Al-based superconducting high-aspect ratio TSVs for quantum 3D integration4citations
  • 2017Reactive Magnetron Sputter Deposition of Superconducting Niobium Titanium Nitride Thin Films with Different Target Sizes19citations
  • 2017Performance of THz Components Based on Microstrip PECVD SiNx Technology3citations
  • 2016Branchline and directional THz coupler based on PECVD SiNx-technology1citations

Places of action

Chart of shared publication
Wingerden, J. Van
1 / 1 shared
Elwakil, I.
1 / 1 shared
De Visser, Pieter
3 / 3 shared
Kouwenhoven, K.
3 / 3 shared
Murugesan, V.
3 / 3 shared
Baselmans, Jochem
6 / 6 shared
Hähnle, S.
2 / 2 shared
Karatsu, Kenichi
2 / 2 shared
Vollebregt, Sten
1 / 14 shared
Endo, Akira
3 / 3 shared
Buijtendorp, B. T.
1 / 1 shared
Mastrangeli, Massimo
4 / 8 shared
Visser, Sten
2 / 2 shared
Sarro, Pasqualina
2 / 5 shared
Lopez, J. Bueno
1 / 1 shared
Barrantes, J. A. Alfaro
1 / 1 shared
Bueno Lopez, J.
2 / 2 shared
Sarro, Pasqualina M.
2 / 12 shared
Baselmans, J. J. A.
2 / 2 shared
Alfaro Barrantes, J. A.
2 / 2 shared
Buijtendorp, B.
1 / 1 shared
Lopez, Juan Bueno
1 / 1 shared
Barrantes, Juan Alfaro
1 / 1 shared
Klapwijk, Teunis
3 / 3 shared
Gimbel, P. M. L.
1 / 1 shared
Haalebos, E. A. F.
1 / 1 shared
Bos, Boy Gustaaf Cornelis
1 / 1 shared
Thierschmann, Holger
1 / 1 shared
Spirito, Marco
1 / 3 shared
Galatro, Luca
2 / 2 shared
Katan, Allard
2 / 2 shared
Finkel, Matvey
1 / 1 shared
Spirito, M.
1 / 2 shared
Finkel, M.
1 / 1 shared
Thierschmann, H. R.
1 / 1 shared
Chart of publication period
2022
2021
2020
2017
2016

Co-Authors (by relevance)

  • Wingerden, J. Van
  • Elwakil, I.
  • De Visser, Pieter
  • Kouwenhoven, K.
  • Murugesan, V.
  • Baselmans, Jochem
  • Hähnle, S.
  • Karatsu, Kenichi
  • Vollebregt, Sten
  • Endo, Akira
  • Buijtendorp, B. T.
  • Mastrangeli, Massimo
  • Visser, Sten
  • Sarro, Pasqualina
  • Lopez, J. Bueno
  • Barrantes, J. A. Alfaro
  • Bueno Lopez, J.
  • Sarro, Pasqualina M.
  • Baselmans, J. J. A.
  • Alfaro Barrantes, J. A.
  • Buijtendorp, B.
  • Lopez, Juan Bueno
  • Barrantes, Juan Alfaro
  • Klapwijk, Teunis
  • Gimbel, P. M. L.
  • Haalebos, E. A. F.
  • Bos, Boy Gustaaf Cornelis
  • Thierschmann, Holger
  • Spirito, Marco
  • Galatro, Luca
  • Katan, Allard
  • Finkel, Matvey
  • Spirito, M.
  • Finkel, M.
  • Thierschmann, H. R.
OrganizationsLocationPeople

document

Branchline and directional THz coupler based on PECVD SiNx-technology

  • Spirito, M.
  • Thoen, David
  • De Visser, Pieter
  • Klapwijk, Teunis
  • Finkel, M.
  • Galatro, Luca
  • Katan, Allard
  • Thierschmann, H. R.
Abstract

A fabrication technology to realize THz microstrip lines and passive circuit components is developed and tested making use of a plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNx) dielectric membrane. We use 2 μm thick SiNx and 300 nm thick gold layers on sapphire substrates. We fabricate a set of structures for thru-reflect-line (TRL) calibration, with the reflection standard implemented as a short through the via. We find losses of 9.5 dB/mm at 300 GHz for a 50 Ohm line. For a branchline coupler we measure 2.5 dB insertion loss, 1 dB amplitude imbalance and 21 dB isolation. Good control over the THz lines parameters is proven by similar performance of a set of 5 structures. The directional couplers show -14 dB transmission to the coupled port, -24 dB to the isolated port and -25 dB in reflection. The SiNx membrane, used as a dielectric, is compatible with atomic force microscopy (AFM) cantilevers allowing the application of this technology to the development of a THz near-field microscope.

Topics
  • impedance spectroscopy
  • atomic force microscopy
  • gold
  • nitride
  • Silicon
  • chemical vapor deposition