Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Letizia, Rosa

  • Google
  • 5
  • 10
  • 5

Lancaster University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2017Subwavelength mode profile customisation using functional materials5citations
  • 2016Customised mode profiles using functional materialscitations
  • 2015Optimization studies on CSRR loaded waveguide for particle accelerator applicationscitations
  • 2015Electron beam excitation of CSRR loaded waveguide for Cherenkov radiationcitations
  • 2014A fast interpolation approach for the calculation of permittivity and conductivity to estimate the SARcitations

Places of action

Chart of shared publication
Gratus, Jonathan
2 / 5 shared
Boyd, Taylor
2 / 2 shared
Kinsler, Paul
2 / 3 shared
Sharples, Emmy
2 / 2 shared
Shah, Simon
1 / 1 shared
Glover, Paul
1 / 1 shared
Pitman, Sam
1 / 1 shared
Priyadarshi, Sanjay
1 / 1 shared
Hu, Bobo
1 / 1 shared
Ye, Jianqiao
1 / 7 shared
Chart of publication period
2017
2016
2015
2014

Co-Authors (by relevance)

  • Gratus, Jonathan
  • Boyd, Taylor
  • Kinsler, Paul
  • Sharples, Emmy
  • Shah, Simon
  • Glover, Paul
  • Pitman, Sam
  • Priyadarshi, Sanjay
  • Hu, Bobo
  • Ye, Jianqiao
OrganizationsLocationPeople

document

A fast interpolation approach for the calculation of permittivity and conductivity to estimate the SAR

  • Shah, Simon
  • Glover, Paul
  • Pitman, Sam
  • Priyadarshi, Sanjay
  • Hu, Bobo
  • Letizia, Rosa
  • Ye, Jianqiao
Abstract

The conductivity and permittivity of biological tissue are critical to estimating local radiofrequency (RF) power deposition (also known as specific absorption rate SAR) for Ultra High Field Magnetic Resonance Imaging (UH-MRI). These electrical properties may also have diagnostic value as malignant tissue types have been shown to have higher permittivity and conductivity than surrounding healthy tissue [1]. Recently a new SAR calculation method of using the transmit B1+ map to obtain tissue electrical property has been proposed as a fast SAR calculation method, and has demonstrated great potential for practical applications. However the current numerical technique used in the B1+ map based electrical property calculation is based on a traditional Finite-Difference algorithm, and therefore it requires high-resolution original B1+ map to achieve accurate electrical property calculation. In this study, we have proposed the Spline interpolation of low resolution MRI B1+ map at 1.5T. The proposed method is robust in approximating complex shapes in medical images through curve fitting and therefore could provide sufficiently accurate approximation of the high resolution B1+ map through the low resolution raw data. This will prove to be useful in the fast real time estimation of local specific absorption rate without compromising the accuracy of SAR calculation. It is found that the Spline interpolation method helps in the reduction of MRI scan time and fast estimation of the SAR.

Topics
  • Deposition
  • impedance spectroscopy
  • electrical property