People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques-Hueso, Jose
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Upconversion 3D printing enhancement via silver sensitization to enable selective metallizationcitations
- 2023Low-power laser manufacturing of copper tracks on 3D printed geometry using liquid polyimide coatingcitations
- 2022Multimaterial 3D Printing Technique for Electronic Circuitry Using Photopolymer and Selective Metallizationcitations
- 2022Routes towards manufacturing biodegradable electronics with polycaprolactone (PCL) via direct light writing and electroless platingcitations
- 2020Light based synthesis of metallic nanoparticles on surface-modified 3D printed substrates for high performance electronic systemscitations
- 2019A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applicationscitations
- 2019Selective Electroless Copper Deposition by Using Photolithographic Polymer/Ag Nanocompositecitations
- 2019Photolithographic nanoseeding method for selective synthesis of metal-catalysed nanostructurescitations
- 2019Selective Metallization of 3D Printable Thermoplastic Polyurethanescitations
- 2019Selective metallisation of 3D printable thermoplastic polyurethanescitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018Hybrid Additive Manufacture of Conformal Antennascitations
- 2014Physical performance limitations of luminescent down-conversion layers for photovoltaic applicationscitations
- 2013Enhanced up-conversion for photovoltaics using 2D photonic crystalscitations
- 2012Optical properties of lanthanide dyes for spectral conversion encapsulated in porous silica nanoparticles
- 2012Nanoplasmonics for photovoltaic applicationscitations
- 2012Plasmon dumping in Ag-nanoparticles/polymer composite for optical detection of amines and thiols vaporscitations
Places of action
Organizations | Location | People |
---|
document
Hybrid Additive Manufacture of Conformal Antennas
Abstract
This paper presents a new digitally driven manufacturing process chain for the production of high performance, three-dimensional RF devices. This is achieved by combining Fused Filament Fabrication of polyetherimide based polymer with selective light-based synthesis of silver nanoparticles and electrochemical deposition of copper. The resultant manufacturing method produces devices with excellent DC electrical resistivity (6.68 μΩ cm) and dielectric properties (relative permittivity of 2.67 and loss tangent of 0.001). Chemically modifying and patterning the substrate to produce the metallization overcomes many of the limitations of direct write deposition methods resulting in improved performance, adhesion and resolution of the antenna pattern. The fabricated demonstrators cover a broadband range of 0.1 GHz - 10 GHz and the measured results show a direct agreement with the simulated design over a wide frequency band. Overall the materials used as a substrate have a low relative permittivity and lower dielectric loss than FR-4, thereby making them well suited for antenna applications.