Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cummins, Gerard

  • Google
  • 7
  • 40
  • 136

University of Birmingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2019Miniaturized 3-D Cross-Type Receiver for Wirelessly Powered Capsule Endoscopy49citations
  • 2018Nanocomposite-Based Microstructured Piezoresistive Pressure Sensors for Low-Pressure Measurement Range39citations
  • 2016Progress towards a multi-modal capsule endoscopy device featuring microultrasound imaging16citations
  • 2016Carbon screen-printed electrodes on ceramic substrates for label-free molecular detection of antibiotic resistance30citations
  • 2015Electrodeposited magnetostrictive Fe-Ga alloys for miniaturised actuators1citations
  • 2014Characterization and Development of Materials for an Integrated High-Temperature Sensor Using Resistive Test Structurescitations
  • 2014Statistical analysis of stencil technology for wafer-level bumping1citations

Places of action

Chart of shared publication
Khan, Sadeque Reza
1 / 3 shared
Desmulliez, Mpy
7 / 49 shared
Pavuluri, Sumanth Kumar
1 / 3 shared
Mitrakos, Vasileios
1 / 1 shared
Hands, Philip J. W.
1 / 1 shared
Macintyre, Lisa
1 / 4 shared
Denison, Fiona C.
1 / 1 shared
Flynn, David
1 / 25 shared
Poltarjonoks, R.
1 / 1 shared
Seetohul, Vipin
1 / 2 shared
Cumming, David
1 / 3 shared
Demore, Christine
1 / 5 shared
Beeley, James
1 / 1 shared
Qiu, Yonqiang
1 / 1 shared
Lay, Holly S.
1 / 3 shared
Al-Rawhani, Mohammed
1 / 2 shared
Wallace, M.
1 / 1 shared
Cox, Benjamin F.
1 / 3 shared
Mcphillips, Rachael
1 / 2 shared
Trolier-Mckinstry, Susan
1 / 14 shared
Cochran, Sandy
1 / 33 shared
Obaje, Eleojo
1 / 1 shared
Schulze, Holger
1 / 2 shared
Mahmood, Salman
1 / 1 shared
Bachmann, Till
1 / 1 shared
Wlodarczyk, Krystian L.
1 / 15 shared
Schiavone, Giuseppe
1 / 4 shared
Shang, Xinxin
1 / 1 shared
Record, Paul M.
1 / 1 shared
Hand, Duncan P.
1 / 60 shared
Ng, Jack H.
1 / 1 shared
Smith, S.
1 / 9 shared
Fu, Yu
1 / 3 shared
Terry, J. G.
1 / 3 shared
Walton, A. J.
1 / 3 shared
Murray, Gordon D.
1 / 1 shared
Kay, Robert W.
1 / 12 shared
Abraham, Eitan
1 / 3 shared
Lathrop, Richard
1 / 1 shared
Krebbs, Thomas
1 / 1 shared
Chart of publication period
2019
2018
2016
2015
2014

Co-Authors (by relevance)

  • Khan, Sadeque Reza
  • Desmulliez, Mpy
  • Pavuluri, Sumanth Kumar
  • Mitrakos, Vasileios
  • Hands, Philip J. W.
  • Macintyre, Lisa
  • Denison, Fiona C.
  • Flynn, David
  • Poltarjonoks, R.
  • Seetohul, Vipin
  • Cumming, David
  • Demore, Christine
  • Beeley, James
  • Qiu, Yonqiang
  • Lay, Holly S.
  • Al-Rawhani, Mohammed
  • Wallace, M.
  • Cox, Benjamin F.
  • Mcphillips, Rachael
  • Trolier-Mckinstry, Susan
  • Cochran, Sandy
  • Obaje, Eleojo
  • Schulze, Holger
  • Mahmood, Salman
  • Bachmann, Till
  • Wlodarczyk, Krystian L.
  • Schiavone, Giuseppe
  • Shang, Xinxin
  • Record, Paul M.
  • Hand, Duncan P.
  • Ng, Jack H.
  • Smith, S.
  • Fu, Yu
  • Terry, J. G.
  • Walton, A. J.
  • Murray, Gordon D.
  • Kay, Robert W.
  • Abraham, Eitan
  • Lathrop, Richard
  • Krebbs, Thomas
OrganizationsLocationPeople

document

Electrodeposited magnetostrictive Fe-Ga alloys for miniaturised actuators

  • Wlodarczyk, Krystian L.
  • Cummins, Gerard
  • Schiavone, Giuseppe
  • Desmulliez, Mpy
  • Shang, Xinxin
  • Record, Paul M.
  • Hand, Duncan P.
  • Ng, Jack H.
Abstract

<p>The application of magnetostrictive materials in MEMS devices requires the development of suitable micromachining technologies for the deposition and patterning at the microscale. Some alloys of iron and gallium, generally classified under the generic name of Galfenol (Fe<sub>1-x</sub>-Ga<sub>x</sub>, 0.10 ≤x≤ 0.35), are known for their excellent magnetostrictive and mechanical properties, which make them ideal candidates for the manufacturing of magnetostrictive microactuator devices. Although techniques have been reported for the machining of such materials at a bigger scale, adequate miniaturisation technologies are sought after to enable the integration of Galfenol into MEMS devices. For this purpose, electrodeposition is an appealing technique as it enables rapid and relatively inexpensive growth, while eliminating the need for selective etching processes. This paper presents advances towards the development of a reliable and reproducible process for the electrodeposition of micrometre-thick Galfenol films through systematic experimental characterisation. A preliminary application is finally presented in the form of bilayer cantilevers fabricated by depositing Galfenol on top of copper beams that can be deflected by applying a uniform external magnetic field.</p>

Topics
  • impedance spectroscopy
  • copper
  • etching
  • iron
  • electrodeposition
  • Gallium