People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krier, Tony
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2019Mid-Infrared InAs/InAsSb Superlattice nBn Photodetector Monolithically Integrated onto Siliconcitations
- 2019Low bandgap GaInAsSb thermophotovoltaic cells on GaAs substrate with advanced metamorphic buffer layercitations
- 2016Low leakage-current InAsSb nanowire photodetectors on siliconcitations
- 2015In(AsN) mid-infrared emission enhanced by rapid thermal annealingcitations
- 2015Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depthscitations
- 2014The structural evolution of InN nanorods to microstructures on Si (111) by molecular beam epitaxycitations
- 2013Rapid thermal annealing and photoluminescence of type-II GaSb single monolayer quantum dot stackscitations
- 2011Direct evidence for suppression of Auger recombination in GaInAsSbP/InAs mid-infrared light-emitting diodescitations
- 2011Photoreflectance study of N- and Sb-related modifications of the energy gap and spin-orbit splitting in InNAsSb alloyscitations
- 2009Effect of low nitrogen concentrations on the electronic properties of InAs1-xNx.citations
- 2007Strain enhancement during annealing of GaAsN alloys.citations
- 2000Nanoindentation studies of MOVPE grown GaAs/InP heterostructures. .citations
Places of action
Organizations | Location | People |
---|
document
Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depths
Abstract
Multilayer structures of active semiconductor devices (1), novel memories (2) and semiconductor interconnects are becoming increasingly three-dimensional (3D) with simultaneous decrease of dimensions down to the few nanometres length scale (3). Ability to test and explore these 3D nanostructures with nanoscale resolution is vital for the optimization of their operation and improving manufacturing processes of new semiconductor devices. While electron and scanning probe microscopes (SPMs) can provide necessary lateral resolution, their ability to probe underneath the immediate surface is severely limited. Cross-sectioning of the structures via focused ion beam (FIB) to expose the subsurface areas often introduces multiple artefacts that mask the true features of the hidden structures, negating benefits of such approach. In addition, the few tens of micrometre dimension of FIB cut, make it unusable for the SPM investigation.