People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Griesser, Stefani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Platforms for controlled release of antibacterial agents facilitated by plasma polymerization
Abstract
<p>Bacterial infections present an enormous problem causing human suffering and cost burdens to the healthcare systems worldwide. Herein we present several versatile strategies for controlled release of antibacterial agents which include silver ions as well as traditional antibiotics. At the heart of these release platforms is a thin film deposited by plasma polymerization. The use of plasma polymerization makes these strategies applicable to the surface of many types of medical devices since the technique for deposition of a polymer film from plasma in practically substrate independent.</p>