People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Munk-Nielsen, Stig
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Thermal cycling characterization of an integrated low-inductance GaN eHEMT power module
- 2024Thermal cycling characterization of an integrated low-inductance GaN eHEMT power module
- 2023Thermal Characteristics of Liquid Metal Interconnects for Power Semiconductorscitations
- 2023Thermal Characteristics of Liquid Metal Interconnects for Power Semiconductorscitations
- 2021Performance evaluation of lithium-ion batteries (LiFePO 4 cathode) from novel perspectives using a new figure of merit, temperature distribution analysis, and cell package analysiscitations
- 2021Performance evaluation of lithium-ion batteries (LiFePO4 cathode) from novel perspectives using a new figure of merit, temperature distribution analysis, and cell package analysiscitations
- 2020Parametric transformer using PM-inductors with saturation-gapcitations
- 2018Frequency domain scanning acoustic microscopy for power electronics:Physics-based feature identification and selectivitycitations
- 2018Frequency domain scanning acoustic microscopy for power electronicscitations
- 2017Short-Circuit Degradation of 10-kV 10-A SiC MOSFETcitations
- 2015Ageing monitoring in IGBT module under sinusoidal loadingcitations
- 2014A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting systemcitations
- 2014A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting systemcitations
- 2014A Tapped-Inductor Buck-Boost Converter for a Dielectric ElectroActive Polymer Generatorcitations
- 2014A Tapped-Inductor Buck-Boost Converter for a Dielectric ElectroActive Polymer Generatorcitations
- 2013An electromechanical model for a dielectric electroactive polymer generatorcitations
- 2013An Electromechanical Model of a Dielectric ElectroActive Polymer Generatorcitations
- 2013An Electromechanical Model of a Dielectric ElectroActive Polymer Generatorcitations
- 2012Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generatorscitations
- 2012Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generatorscitations
Places of action
Organizations | Location | People |
---|
document
Energy Harvesting Cycles of Dielectric ElectroActive Polymer Generators
Abstract
Energy harvesting via Dielectric ElectroActive Polymer (DEAP) generators has attracted much of the scientific interest over the past few years, mainly due to the advantages that these smart materials offer against competing technologies, as electromagnetic generators and piezoelectrics. Their higher energy density, superior low-speed performance, light-weighted nature as well as their shapely structure have rendered DEAPs candidate solutions for various actuation and energy harvesting applications. In this paper, a thoroughly analysis of all energy harvesting operational cycles of a DEAP generator, coupled to a non-isolated power electronics converter, is conducted and for the first time experimental results for each one of them are presented.