People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Caspani, Lucia
University of Insubria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Scalable Quantum Signal Processing with Integrated Photonics and Fiber-based Modules
- 2017Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitationcitations
- 2016Enhanced nonlinear refractive index in epsilon-near-zero materialscitations
- 2016Optically induced metal-to-dielectric transition in epsilon-near-zero metamaterialscitations
Places of action
Organizations | Location | People |
---|
document
Scalable Quantum Signal Processing with Integrated Photonics and Fiber-based Modules
Abstract
Quantum photonic resources are critical for advanced applications such as quantum computation, communication, and information processing. Efficient generation and detection of quantum states, as well as reliable photon manipulation techniques, are essential for the development of practical quantum technologies. Integrated photonic platforms offer attractive solutions due to their stability, small device footprint, and improved power efficiencies. However, optical loss and environmental noise hinder their capability to transmit, measure, and detect quantum states with high accuracies. To tackle these limitations, we have developed robust solutions for quantum signal processing by leveraging infrastructures from telecommunications and integrated photonics. These approaches focus on the use of silicon-based photonic sources for entanglement generation in the time and frequency degrees of freedom, as well as chip- and fiber-based architectures for entanglement verification via quantum interference and tomography measurements. Our photonic schemes allow for high-dimensional entanglement processing, demonstrating their versatility in developing scalable and cost-efficient quantum signal processing platforms.© 2023 IEEE.