People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vorotyntsev, Vladimir
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Preparation of PbTe thin films for high-sensitive Mid-IR photodetectors by PECVD
Abstract
<p>Lead telluride (PbTe) possesses a good performance as a thermoelectric material due to both a low thermal conductivity and its electrical properties. It has peak thermoelectric characteristics at high temperature and is widely used in spacecraft power applications and as a waveguide-integrated detector monolithically integrated on a silicon substrate and operating at room temperature. In this work PbTe thin films were prepared via direct plasma-chemical interaction of lead and tellurium vapors. Argon of high purity was also used as a career gas for precursors transport to the plasma zone and as a plasma feed gas. The process was carried out at the low pressure (0.01 Torr) in inductively coupled non-equilibrium RF (40.68 MHz) plasma discharge. Optical emission spectroscopy (OES) was used to identify the exited species and to assume the possible mechanisms of plasma-chemical reactions. The stoichiometry, structure and morphology of the surface of the materials obtained was also studied by deferent analytical techniques dependently on the conditions of the plasma process. </p>