Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sukham, Johneph

  • Google
  • 4
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Lamellas metamaterials: Properties and potential applicationscitations
  • 2019Lamellas metamaterials: Properties and potential applicationscitations
  • 2018Initial Investigation for the Fabrication of Hyperbolic Metamaterials Based on Ultra-Thin Au Layerscitations
  • 2017Advanced fabrication of hyperbolic metamaterialscitations

Places of action

Chart of shared publication
Malureanu, Radu
4 / 51 shared
Repän, Taavi
2 / 8 shared
Shkondin, Evgeniy
3 / 29 shared
Takayama, Osamu
4 / 32 shared
Lavrinenko, Andrei V.
3 / 98 shared
Laurynenka, Andrei
1 / 14 shared
Jensen, Flemming
1 / 32 shared
Panah, Mohammad Esmail Aryaee
1 / 6 shared
Chart of publication period
2019
2018
2017

Co-Authors (by relevance)

  • Malureanu, Radu
  • Repän, Taavi
  • Shkondin, Evgeniy
  • Takayama, Osamu
  • Lavrinenko, Andrei V.
  • Laurynenka, Andrei
  • Jensen, Flemming
  • Panah, Mohammad Esmail Aryaee
OrganizationsLocationPeople

document

Lamellas metamaterials: Properties and potential applications

  • Malureanu, Radu
  • Repän, Taavi
  • Shkondin, Evgeniy
  • Sukham, Johneph
  • Takayama, Osamu
  • Lavrinenko, Andrei V.
Abstract

We report here on our advances in fabrication and characterization of lamellas metamaterials. Such structures can exhibit effective properties with enhanced and even extreme anisotropy. The latter case exhibits hyperbolic dispersion. Typical hyperbolic metamaterials (HMMs) consist of alternative metal/plasmonic and dielectric layers. We have developed two types of lamellas metamaterials: planar multilayer and vertical trench structures. In the former case, we deposit ultrathin ultra-smooth gold layers with the assistance of organic material (APTMS) adhesion layer. The technology supports the stacking of such layers in a multi-periods construction with alumina spacers between gold films. While planar technology makes multilayer systems conventional nanostructures, vertical arrangement of nanolamellas requires a nontrivial fabrication processing. In the latter case, we apply the atomic layer deposition (ALD) technique to arrange vertical alignment of layers of heavily doped ZnO or TiN, which enables us to produce hyperbolic metamaterials in the visible or near- and mid-infrared ranges. Potential applications of such structured lamellas metamaterials are illustrated with examples of surface waves propagation and sensing.

Topics
  • dispersion
  • surface
  • gold
  • tin
  • metamaterial
  • atomic layer deposition
  • lamellae