People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gregersen, Niels
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024InAs(P)/InP QDs as sources of single indistinguishable photons at 1.55 µm
- 2018Benchmarking state-of-the-art numerical simulation techniques for analyzing large photonic crystal membrane line defect cavities
- 2018Benchmarking state-of-the-art numerical simulation techniques for analyzing large photonic crystal membrane line defect cavities
- 2018Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures
- 2018Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures
- 2018Designing Single-Photon Sources: Towards Unity
- 2018Designing Single-Photon Sources: Towards Unity
- 2018Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavitiescitations
- 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
- 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
- 2018Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavitiescitations
- 2017Comparison of Five Computational Methods for Computing Q Factors in Photonic Crystal Membrane Cavities
- 2017Comparison of Five Computational Methods for Computing Q Factors in Photonic Crystal Membrane Cavities
- 2017Benchmarking five computational methods for analyzing large photonic crystal membrane cavitiescitations
- 2017Benchmarking five computational methods for analyzing large photonic crystal membrane cavitiescitations
- 2017Ultralow power all-optical switch
- 2016Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities
- 2016Comparison of four computational methods for computing Q factors and resonance wavelengths in photonic crystal membrane cavities
- 2015Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguidescitations
- 2015Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguidescitations
- 2012Effi›cient and broadband spontaneous emission control in fiber-like photonic nanowires
Places of action
Organizations | Location | People |
---|
document
Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
Abstract
By introducing defects into an otherwise periodic photonic crystal lattice, high quality (Q) factor cavities may be formed. However, the size and the lack of simplifying symmetries in the photonic crystal membrane make these types of cavities exceptionally hard to analyze using numerical simulation methods. In this work, we consider<br/>two different line defect cavities and we compute their Q factors using state-of-the-art optical simulation tools. We show that certain simulation methods perform much better than others in the analysis of these challenging structures.