People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lastusaari, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Biophotonic composite scaffolds for controlled nitric oxide release upon NIR excitation
- 2023Glass-based composites comprised of CaWO4:Yb3+, Tm3+ crystals and SrAl2O4:Eu2+, Dy3+ phosphors for green afterglow after NIR chargingcitations
- 2023Glass-based composites comprised of CaWO4:Yb3+, Tm3+ crystals and SrAl2O4:Eu2+, Dy3+ phosphors for green afterglow after NIR chargingcitations
- 2023Glass-based composites comprised of CaWO4:Yb3+, Tm3+ crystals and SrAl2O4:Eu2+, Dy3+ phosphors for green afterglow after NIR chargingcitations
- 2022Near-infrared rechargeable glass-based composites for green persistent luminescencecitations
- 2022Near-infrared rechargeable glass-based composites for green persistent luminescencecitations
- 2022Low temperature afterglow from SrAl2O4 : Eu, Dy, B containing glasscitations
- 2021Micro-luminescence measurement to evidence decomposition of persistent luminescent particles during the preparation of novel persistent luminescent tellurite glassescitations
- 2021Preparation of glass-based composites with green upconversion and persistent luminescence using modified direct doping methodcitations
- 2019Phosphate glasses with blue persistent luminescence prepared using the direct doping methodcitations
- 2019Sintered silica bodies with persistent luminescencecitations
- 2018Persistent luminescent borosilicate glasses using direct particles doping methodcitations
- 2018Influence of the phosphate glass melt on the corrosion of functional particles occurring during the preparation of glass-ceramicscitations
- 2018Processing and Characterization of Bioactive Borosilicate Glasses and Scaffolds with Persistent Luminescencecitations
- 2018Decomposition of persistent luminescent microparticles in corrosive phosphate glass meltcitations
- 2018Persistent luminescent particles containing bioactive glassescitations
- 2017Upconversion in low rare-earth concentrated phosphate glasses using direct NaYF4citations
- 2016Novel oxyfluorophosphate glasses and glass-ceramicscitations
- 2016Effect of the glass melting condition on the processing of phosphate-based glass-ceramics with persistent luminescence propertiescitations
- 2015Processing and characterization of phosphate glasses containing CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ microparticlescitations
- 2015New alternative route for the preparation of phosphate glasses with persistent luminescence propertiescitations
- 2011Defect aggregates in the Sr.sub.2./sub.MgSi.sub.2./sub.O.sub.7./sub. persistent luminescence materialcitations
Places of action
Organizations | Location | People |
---|
document
Processing and Characterization of Bioactive Borosilicate Glasses and Scaffolds with Persistent Luminescence
Abstract
<p>In this proceeding, we report our latest results on the development of borosilicate glasses with persistent luminescence (PeL). Those PeL glasses were processed by adding PeL microparticles (MPs) in the glass using the direct doping method. First, we explain the challenges to balance the survival and dispersion of MPs when preparing borosilicate glasses using this method. Then, we show that scaffold can be obtained using the sintering process from these glasses but also by adding PeL microparticles (MPs) in the glass powder prior to sintering. Finally, we discuss the impact of the scaffold fabrication process on the PeL properties of the MPs.</p>