People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malureanu, Radu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (51/51 displayed)
- 2022Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assemblycitations
- 2022Chemical Vapor-Deposited Graphene on Ultraflat Copper Foils for van der Waals Hetero-Assemblycitations
- 2021Acceleration of radiative recombination in quasi-2D perovskite films on hyperbolic metamaterialscitations
- 2020Plasmonic nanojet:an experimental demonstrationcitations
- 2020Microspherical nanoscopy: is it a reliable technique?citations
- 2020Microspherical nanoscopy: is it a reliable technique?citations
- 2020Plasmonic nanojetcitations
- 2019Lamellas metamaterials: Properties and potential applications
- 2019Lamellas metamaterials: Properties and potential applications
- 2018Initial Investigation for the Fabrication of Hyperbolic Metamaterials Based on Ultra-Thin Au Layers
- 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
- 2018Which Computational Methods Are Good for Analyzing Large Photonic Crystal Membrane Cavities?
- 2017Advanced fabrication of hyperbolic metamaterials
- 2017Two-Photon Polymerization lithography for three-dimensional micro polymer parts manufacturing evaluation
- 2017Broadband infrared absorption enhancement by electroless-deposited silver nanoparticlescitations
- 2016Conductive Oxides Trench Structures as Hyperbolic Metamaterials in Mid-infrared Range
- 2016Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements
- 2015Ultra-thin Metal and Dielectric Layers for Nanophotonic Applicationscitations
- 2014Super-resolution near field imaging device
- 2014Super-resolution near field imaging device
- 2014Linear and nonlinear properties of chalcogenide glasses in the terahertz frequency
- 2014Nanoplasmonic solution for nonlinear optics
- 2013Terahertz-induced Kerr effect in amorphous chalcogenide glassescitations
- 2013Fabrication and characterization of transparent metallic electrodes in the terahertz domain
- 2013Fabrication and characterization of transparent metallic electrodes in the terahertz domain
- 2012Metamaterials modelling, fabrication, and characterisation techniques
- 2012Metamaterials modelling, fabrication, and characterisation techniques
- 2012Ultrabroadband terahertz spectroscopy of chalcogenide glassescitations
- 2012Metamaterials modelling, fabrication and characterisation techniques
- 2012Metamaterials modelling, fabrication and characterisation techniques
- 2011Enhanced broadband optical transmission in metallized woodpilescitations
- 2011Enhanced broadband optical transmission in metallized woodpilescitations
- 2011Wave impedance retrieving via Bloch modes analysis
- 2011Wave impedance retrieving via Bloch modes analysis
- 2011Wave propagation in structured materials as a platform for effective parameters retrieving
- 2011Ultrabroadband THz spectroscopy of disordered materials
- 2010Enhanced broadband optical transmission in metallized woodpiles
- 2010Enhanced broadband optical transmission in metallized woodpiles
- 2010Optimisation of the electroless metal deposition technique for use in photonics
- 2010Optimisation of the electroless metal deposition technique for use in photonics
- 2010Controlled Ag electroless deposition in bulk structures with complex three-dimensional profilescitations
- 2010Controlled Ag electroless deposition in bulk structures with complex three-dimensional profilescitations
- 2009Isotropic metal deposition technique for metamaterials fabrication
- 2009Nested structures approach for bulk 3D negative index materials:[invited]
- 20093D geometrically isotropic metamaterial for telecom wavelengths
- 20093D geometrically isotropic metamaterial for telecom wavelengths
- 2009Bulk metamaterials: Design, fabrication and characterization
- 2009Isotropic metal deposition technique for metamaterials fabrication
- 2009Bulk metamaterials: Design, fabrication and characterization:[invited]
- 2009Nested structures approach for bulk 3D negative index materials
- 2008Accurate analysis of planar metamaterials using the RLC theory
Places of action
Organizations | Location | People |
---|
document
Linear and nonlinear properties of chalcogenide glasses in the terahertz frequency
Abstract
Terahertz (THz) waves have the potential to improve a wide range of devices in the space, defense and semiconductor industries as well as offering the possibility of investigating various molecules of interest in biology, medicine, art etc. For this reason, THz sources, detectors and passive linear components have greatly been developed in recent years. However there is still no any non-linear device available. This is mainly due to the lack of the rigorous investigation of non-linear characteristics of materials in the THz range. We chose to investigate chalcogenide glasses due to their high nonlinear coefficients in the optical range, which might suggest pronounced nonlinear behavior also at THz frequencies. Here we present measurements, both linear and nonlinear, of As2S3 and As2Se3. For the linear measurements we employed a combination of THz time-domain spectroscopy setups. In the low frequency range we used a standard THz-TDS setup based on photoconductive switches while in the higher frequency domain we used an air biased coherent detection (ABCD) setup. This allowed for a wide frequency range (from 0.2 to 18 THz) investigation of the refractive index of the glasses. The nonlinear coefficient in the THz range was investigated using a lithium niobate based setup that allows us to reach electrical field strength exceeding 400 kV/cm. Results from both investigations will be presented during the talk.