People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alahi, Md Eshrat E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022A Critical Review of the Use of Graphene-Based Gas Sensorscitations
- 2021Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activitiescitations
- 2016Highly selective ion imprinted polymer based interdigital sensor for nitrite detectioncitations
Places of action
Organizations | Location | People |
---|
document
Highly selective ion imprinted polymer based interdigital sensor for nitrite detection
Abstract
<p>This research proposed the real-time detection of nitrite by employing electrochemical impedance spectroscopy (EIS) technique incorporating an interdigital capacitive sensor. A self-assembled monolayer functionalized the sensing surface with embedded ion-imprinted polymer (IIP) with selectivity for nitrite ions were introduced. Syntheis and characterization of IIP are also explained to validate the polymerization technique. Some initial results using different concentrations of nitrite sample to validate the proposed method are also presented. The promising results highlight the extraordinary potential to develop low-cost, in-situ measurement system to detect nitrite contamination with real-time monitoring.</p>