People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nag, Anindya
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Novel Surfactant-Induced MWCNTs/PDMS-Based Nanocomposites for Tactile Sensing Applicationscitations
- 2022Carbon fiber/polymer-based composites for wearable sensorscitations
- 2022A Critical Review of the Use of Graphene-Based Gas Sensorscitations
- 2021Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activitiescitations
- 2021Multi-walled carbon nanotubes-based sensors for strain sensing applicationscitations
- 2019Laser-assisted printed flexible sensorscitations
- 2019Multifunctional flexible sensor based on laser-induced graphenecitations
- 2018Development of printed sensors for shoe sensing applicationscitations
- 2018Fabrication and implementation of printed sensors for taste sensing applicationscitations
- 2017Flexible printed sensors for ubiquitous human monitoringcitations
- 2017Development of printed sensors for taste sensingcitations
- 2017Sensing system for salinity testing using laser-induced graphene sensorscitations
- 2016Improved detection limits for phthalates by selective solid-phase micro-extractioncitations
- 2016Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoringcitations
- 2016Transparent biocompatible sensor patches for touch sensitive prosthetic limbscitations
Places of action
Organizations | Location | People |
---|
document
Improved detection limits for phthalates by selective solid-phase micro-extraction
Abstract
<p>Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid-phase extraction (MISPE) polymer. The polymers were functionalized on an interdigital capacitive sensor for selective binding of phthalate molecules from a complex mixture of chemicals. Both polymers owned predetermined selectivity by formation of valuable molecular recognition sites for Bis (2-ethylhexyl) phthalate (DEHP). Polymers were immobilized on planar electrochemical sensor fabricated on a single crystal silicon substrate with 500 nm sputtered gold electrodes fabricated using MEMS fabrication techniques. Impedance spectra were obtained using electrochemical impedance spectroscopy (EIS) to determine sample conductance for evaluation of phthalate concentration in the spiked sample solutions with various phthalate concentrations. Experimental results revealed that the ability of SPME polymer to adsorb target molecules on the sensing surface is better than that of MISPE polymer for phthalates in the sensing system. Testing the extracted samples using high performance liquid chromatography with photodiode array detectors validated the results.</p>