People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sugden, Kate
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2020Bragg gratings inscribed in solid-core microstructured single-mode polymer optical fiber drawn from a 3D-printed polycarbonate preformcitations
- 2020Bragg gratings inscribed in solid-core microstructured single-mode polymer optical fiber drawn from a 3D-printed polycarbonate preform
- 2016Microstructured polymer optical fibre sensors for opto-acoustic endoscopycitations
- 2011Photonic crystal fiber Bragg grating based sensors: opportunities for applications in healthcarecitations
- 2011Embedded multiplexed polymer optical fiber sensor for esophageal manometrycitations
- 2011Embedded multiplexed polymer optical fiber sensor for esophageal manometrycitations
- 2011Photonic crystal fiber Bragg grating based sensorscitations
- 2011Femtosecond laser micro-inscription of optical coherence tomography resolution test artifactscitations
Places of action
Organizations | Location | People |
---|
booksection
Embedded multiplexed polymer optical fiber sensor for esophageal manometry
Abstract
There is a growing interest for esophageal measurements which can provide important and reliable data when diagnosing the motor function of the sphincters and the esophageal body. Biocompatibility, sensing resolution and the comfort of the patient are key parameters for manometric sensing systems. A new sensing approach which could fulfill all these needs is presented in this paper consisting of an embedded polymer fiber sensor, based on multiplexed fiber Bragg gratings. A response to a radial pressure almost 6 times that of a comparable silica fiber based sensor is obtained.