People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wiegerink, Remco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Microfabrication Technology for Isolated Silicon Sidewall Electrodes and Heaters
- 2024Inline and Real-Time Microfluidic Relative Permittivity Sensor Using Highly Doped Silicon Sidewall Electrodes
- 2018Micro Coriolis mass flow sensor driven by integrated PZT thin film actuators
- 2018Inline relative permittivity sensing using silicon electrodes realized in surface channel technologycitations
- 2007Biomimetic micromechanical adaptive flow-sensor arrayscitations
- 2007Cricket inspired flow-sensor arrayscitations
- 2001Platinum patterning by a modified lift-off technique and its application in a silicon load cell
- 2000Characterization of platinum lift off technique
Places of action
Organizations | Location | People |
---|
document
Cricket inspired flow-sensor arrays
Abstract
We report current developments in biomimetic flow-sensors based on mechanoreceptive sensory hairs of crickets. These filiform hairs are highly perceptive to lowfrequency sound with energy sensitivities close to thermal threshold. In this work we describe hair-sensors fabricated by a combination of sacrificial poly-silicon technology, to form silicon-nitride suspended membranes, and SU8 polymer processing for fabrication of hairs with diameters of about 50 μm and up to 1 mm length. The membranes have thin chromium electrodes on top forming variable capacitors with the substrate allowing for capacitive read-out. Previously these sensors have been shown to exhibit acoustic sensitivity. Based on a hydrodynamic – mechanical interaction model we derive a figure of merit. We present optical measurements on acoustically excited hair-sensors. Experimental data and the derived models are shown to exhibit good correspondence.